Modeling dynamics of block-and-fault systems and seismicity
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 174-190
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A model of block-and-fault system dynamics (a block model) has been developed to analyze how the basic features of seismicity depend on the lithosphere structure in a region under consideration and peculiarities of its dynamics. The lithosphere in the region is modeled by a system of perfectly rigid blocks divided by infinitely thin fault planes. The viscoelastic interaction between blocks themselves and with the underlying medium is specified. Displacements and rotations of blocks at each time moment are determined so that the whole block system would be in a quasistatic equilibrium state. When the ratio of the stress to the pressure exceeds the critical level in some part of a fault zone, a stress drop occurs that is considered in the model as an earthquake. The paper contains a review of results obtained by numerical simulation of different block structures dynamics including the structures approximating the lithosphere structure in specific active regions. These results give a hope that the block model is a useful tool for studying relations between geometry and movements of faults and blocks and seismicity features.
Keywords: block structure dynamics, seismicity, numerical simulation, lithosphere structure.
@article{TIMM_2011_17_2_a15,
     author = {A. A. Soloviev},
     title = {Modeling dynamics of block-and-fault systems and seismicity},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {174--190},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a15/}
}
TY  - JOUR
AU  - A. A. Soloviev
TI  - Modeling dynamics of block-and-fault systems and seismicity
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 174
EP  - 190
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a15/
LA  - ru
ID  - TIMM_2011_17_2_a15
ER  - 
%0 Journal Article
%A A. A. Soloviev
%T Modeling dynamics of block-and-fault systems and seismicity
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 174-190
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a15/
%G ru
%F TIMM_2011_17_2_a15
A. A. Soloviev. Modeling dynamics of block-and-fault systems and seismicity. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 174-190. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a15/

[1] Hattori S., “Regional distribution of $b$-value in the world”, Bull. Int. Inst. Seismol. Earth Eng., 12 (1974), 39–58

[2] Kronrod T. I., “Parametry seismichnosti dlya osnovnykh vysokoseismichnykh raionov mira”, Logicheskie i vychislitelnye metody v seismologii, Vychisl. seismologiya, 17, Nauka, M., 1984, 36–58

[3] Mogi K., “Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes”, Bull. Earthquake Inst. Tokyo Univ., 40 (1962), 831–853

[4] O. G. Shamina [i dr.], “Laboratornye eksperimenty po fizike ochaga zemletryaseniya”, Fizicheskie protsessy v ochagakh zemletryasenii, Nauka, M., 1980, 56–68

[5] Sherman S. I., Bornyakov S. A., Buddo V. Yu., Oblasti dinamicheskogo vliyaniya razlomov (Rezultaty modelirovaniya), Nauka, Novosibirsk, 1983, 110 pp.

[6] Shaw B. E., Carlson J. M., Langer J. S., “Patterns of seismic activity preceding large earthquakes”, J. Geophys. Res., 97 (1992), 479–488 | DOI

[7] Gabrielov A. M., Newman W. I., “Seismicity modelling and earthquake prediction: A review”, Nonlinear Dynamics and and Predictability of Geophysical Phenomena, Geophys. Monogr. Ser., 83, American Geophysical Union, Washington, 1994, 7–13

[8] C. J. Allegre [et al.], “Scaling organization of fracture tectonics (SOFT) and earthquake mechanism”, Phys. Earth. Planet. Inter., 92 (1995), 215–233 | DOI

[9] Newman W. I., Turcotte D. L., Gabrielov A. M., “Log-periodic behaviour of a hierarchical failure model with application to precursory seismic activation”, Phys. Rev. E, 52:5 (1995), 4827–4835 | DOI

[10] Turcotte D. L., Fractals and chaos in geology and geophysics, 2nd edn., Cambridge University Press, Cambridge, 1997, 398 pp. | MR

[11] M. A. Alekseevskaya [i dr.], “Morfostrukturnoe raionirovanie gornykh stran po formalizovannym priznakam”, Raspoznavanie i spektralnyi analiz v seismologii, Vychisl. seismologiya, 10, Nauka, M., 1977, 33–49

[12] A. M. Gabrielov [i dr.], “Blokovaya model dinamiki litosfery”, Matematicheskie metody v seismologii i geodinamike, Vychisl. seismologiya, 19, Nauka, M., 1986, 168–178

[13] Gabrielov A. M., Levshina T. A., Rotwain I. M., “Block model of earthquake sequence”, Phys. Earth and Planet. Inter., 61:1–2 (1990), 18–28 | DOI

[14] Soloviev A., Ismail-Zadeh A., “Models of dynamics of block-and-fault systems”, Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, Springer-Verlag, Berlin–Heidelberg, 2003, 71–139

[15] Keilis-Borok V. I., Rotwain I. M., Soloviev A. A., “Numerical modeling of block structure dynamics: dependence of a synthetic earthquake flow on the structure separateness and boundary movements”, J. of Seismol., 1:2 (1997), 151–160 | DOI

[16] Garyanova T. V., Rotvain I. M., “Svoistva potoka seismichnosti prosteishikh tipov tektonicheskikh dvizhenii. Blokovaya model i realnost”, Voprosy geodinamiki i seismologii, Vychisl. seismologiya, 30, GEOS, M., 1998, 289–299

[17] Gasilov V. L., Prozorov A. G., Solovev A. A., “Lokalnoe vzaimodeistvie seismicheskikh sobytii iskusstvennogo kataloga v modeli dinamiki blokovoi struktury”, Sovremennye problemy seismichnosti i dinamiki Zemli, Vychisl. seismologiya, 28, Nauka, M., 1996, 110–130

[18] Maksimov V. I., Solovev A. A., “Gruppirovanie zemletryasenii v blokovoi modeli dinamiki litosfery”, Sovremennye problemy seismichnosti i dinamiki Zemli, Vychisl. seismologiya, 28, Nauka, M., 1996, 148–152

[19] A. Gorshkov [et al.], “On dynamics of seismicity simulated by the models of blocks-and-faults systems”, Annali di Geofisica, 40:5 (1997), 1217–1232

[20] Rotvain I. M., Solovev A. A., “Chislennoe modelirovanie dinamiki blokovykh struktur: vremennye kharakteristiki potoka modelnykh zemletryasenii”, Voprosy geodinamiki i seismologii, Vychisl. seismologiya, 30, GEOS, M., 1998, 275–288

[21] Vorobeva I. A., Solovev A. A., “Udalennoe vzaimodeistvie mezhdu iskusstvennymi zemletryaseniyami v blokovoi modeli dinamiki litosfery”, Problemy dinamiki litosfery i seismichnosti, Vychisl. seismologiya, 32, GEOS, M., 2001, 202–211

[22] Soloviev A., “Transformation of frequency-magnitude relation prior to large events in the model of block structure dynamics”, Nonlin. Processes in Geophys., 15:1 (2008), 209–220 | DOI | MR

[23] Solovev A. A., Rundkvist D. V., “Modelirovanie seismichnosti dugoobraznoi zony subduktsii”, Dokl. AN, 362:2 (1998), 256–260

[24] Rundquist D. V., Soloviev A. A., “Numerical modeling of block structure dynamics: an arc subduction zone”, Phys. Earth and Planet. Inter., 111:3–4 (1999), 241–252 | DOI

[25] Sobolev P. O., Solovev A. A., Rotvain I. M., “Modelirovanie litosfery i seismichnosti dlya regiona Blizhnego Vostoka”, Sovremennye problemy seismichnosti i dinamiki Zemli, Vychisl. seismologiya, 28, Nauka, M., 1996, 131–147

[26] Panza G. F., Soloviev A. A., Vorobieva I. A., “Numerical modelling of block-structure dynamics: application to the Vrancea region”, Pure and Appl. Geophys., 149 (1997), 313–336 | DOI

[27] Vorobeva I. A., Solovev A. A., “Svyaz prostranstvennogo raspredeleniya epitsentrov zemletryasenii i dvizheniya litosfernykh blokov”, Dokl. AN, 354:5 (1997), 672–675

[28] Soloviev A. A, Vorobieva I. A., Panza G. F., “Modelling of block-structure dynamics: Parametric study for Vrancea”, Pure and Appl. Geophys., 156:3 (1999), 395–420 | DOI

[29] Soloviev A. A, Vorobieva I. A., Panza G. F., “Modelling of block structure dynamics for the Vrancea region: Source mechanisms of the synthetic earthquakes”, Pure and Appl. Geophys., 157:1–2 (2000), 97–110

[30] Vorobeva I. A., Gorshkov A. I., Solovev A. A., “Modelirovanie dinamiki blokovoi struktury i seismichnosti Zapadnykh Alp”, Problemy dinamiki i seismichnosti Zemli, Vychisl. seismologiya, 31, GEOS, M., 2000, 154–169

[31] A. Peresan [et al.], “Simulation of seismicity in the block-structure model of Italy and its surroundings”, Pure and Appl. Geophys., 164:11 (2007), 2193–2234 | DOI

[32] A. Ismail-Zadeh [et al.], “Numerical modeling of crustal block-and-fault dynamics, earthquakes and slip rates in the Tibet-Himalayan region”, Earth and Planet. Sci. Lett., 258:3–4 (2007), 465–485 | DOI

[33] Kagan Y., Knopoff L., “Statistical study of the occurrence of shallow earthquakes”, Geophys. J. Roy. Astron. Soc., 55 (1978), 67–86

[34] Keilis-Borok V. I., Knopoff L., Rotwain I. M., “Bursts of aftershocks, long-term precursors of strong earthquakes”, Nature, 283 (1980), 258–263 | DOI

[35] Dzievonskii A. M., Prozorov A. G., “Avtomodelnoe opredelenie gruppirovaniya zemletryasenii”, Matematicheskoe modelirovanie i interpretatsiya geofizicheskikh dannykh, Vychisl. seismologiya, 16, Nauka, M., 1984, 10–21

[36] Molchan G. M., Dmitrieva O. E., “Identifikatsiya aftershokov: obzor i novye problemy”, Sovremennye metody interpretatsii seismologicheskikh dannykh, Vychisl. seismologiya, 24, Nauka, M., 1991, 19–50

[37] Kagan Y. Y., Jackson D. D., “Long-term earthquake clustering”, Geophys. J. Int., 104 (1991), 117–133 | DOI

[38] T. C. Halsey [et al.], “Fractal measure and their singularities: The characterization of strange sets”, Phys. Rev. A, 33:2 (1986), 1141–1151 | DOI | MR | Zbl

[39] Geilikman M. B., Golubeva T. V., Pisarenko V. F., “Samopodobnaya ierarkhicheskaya struktura polya epitsentrov zemletryasenii”, Kompyuternyi analiz geofizicheskikh polei, Vychisl. seismologiya, 23, Nauka, M., 1990, 123–139

[40] Benioff H., “Global strain accumulation and release as related by great earthquakes”, Bull. Geol. Soc. Amer., 62 (1951), 331–338 | DOI

[41] Duda S. J., “Secular seismic energy release in the circum Pacific belt”, Tectonophysics, 2:5 (1965), 409–452 | DOI

[42] Keilis-Borok V. I., Malinovskaya L. N., “On regularity in the occurrence of strong earthquakes”, J. Geophys. Res., 69 (1964), 3019–3024 | DOI

[43] Prozorov A. G., “Algoritm prognoza zemletryasenii dlya regiona Pamira i Tyan-Shanya po kombinatsii udalennykh aftershokov i zatishii”, Kompyuternyi analiz geofizicheskikh polei, Vychisl. seismologiya, 23, Nauka, M., 1990, 75–84

[44] Prozorov A. G., “Novyi kriterii proverki statisticheskoi znachimosti udalennogo vzaimodeistviya silnykh zemletryasenii”, Matematicheskoe modelirovanie seismotektonicheskikh protsessov v litosfere, orientirovannoe na problemu prognoza zemletryasenii, Vyp. 1, MITP RAN, M., 1993, 69–73

[45] Press F., Allen C., “Patterns of seismic release in the southern California region”, J. Geophys. Res., 100:B4 (1995), 6421–6430 | DOI

[46] Gripp A. E., Gordon R. G., “Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model”, Geophys. Res. Lett., 17:8 (1990), 1109–1112 | DOI

[47] Gorshkov A. I., Rantsman E. Ya., “Morfostrukturnye lineamenty Zapadnykh Alp”, Geomorfologiya, 1982, no. 4, 64–72

[48] Caputo M., “Critical study of ENEL catalogue of Italian earthquakes from the year 1000 through 1975”, Rassegna Lavori Pubblici, 1981, no. 2, 3–16

[49] Vogt J., Les treblements de terre en France, Mémoires du Bureau de recherches géologiques et miniéres, 96, 1979, 245 pp.

[50] K. Veber [i dr.], “Raspoznavanie mest vozmozhnogo vozniknoveniya silnykh zemletryasenii. XII. Dva podkhoda k prognozu mest vozmozhnogo vozniknoveniya silnykh zemletryasenii v Zapadnykh Alpakh”, Teoriya i analiz seismologicheskoi informatsii, Vychisl. seismologiya, 18, Nauka, M., 1985, 139–154

[51] A. Cisternas [et al.], “A dual approach to recognition of earthquake prone areas in the Western Alps”, Annales Geophysicae, 3:2 (1985), 249–270

[52] R. Devoti [et al.], “Geophysical interpretation of geodetic deformations in the Central Mediterranean area”, Plate Boundary Zones. Geodynam. Ser., 30 (2002), 57–65

[53] Melnikova L. A., Rozenberg V. L., “Parallelnaya realizatsiya sfericheskoi modifikatsii blokovoi modeli”, Algoritmy i programmnye sredstva parallelnykh vychislenii, 3, UrO RAN, Ekaterinburg, 1999, 186–200

[54] L. A. Melnikova [i dr.], “Chislennoe modelirovanie dinamiki sistemy tektonicheskikh plit: sfericheskaya modifikatsiya blokovoi modeli”, Problemy dinamiki i seismichnosti Zemli, Vychisl. seismologiya, 31, GEOS, M., 2000, 138–153

[55] L. A. Melnikova [i dr.], “Sfericheskaya blokovaya model: izuchenie dinamiki i seismichnosti globalnoi sistemy tektonicheskikh plit”, Analiz geodinamicheskikh i seismicheskikh protsessov, Vychisl. seismologiya, 35, GEOS, M., 2004, 82–106

[56] V. L. Rozenberg [et al.], “The spherical block model: Dynamics of the global system of tectonic plates and seismicity”, Pure and Appl. Geophys., 162:1 (2005), 145–164 | DOI

[57] Shebalin P., Soloviev A., Le Mouël J.-L., “Scaling organization in the dynamics of blocks-and-faults systems”, Phys. Earth and Planet. Inter., 131:2 (2002), 141–153 | DOI