Classification of elements of small height in lattices of complete multipartite graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 159-173

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the paper is to classify elements of height 2 and 3 in lattices $NPL(n,t)$ of complete multipartite graphs for $t\ge4$. In addition, lower floors of the lattices $NPL(n,t)$ are described and information on two chromatic invariants is specified. This information is used for studying the chromatic uniqueness of complete multipartite graphs.
Mots-clés : integer partition, complete multipartite graph
Keywords: lattice, graph, chromatic polynomial, chromatic uniqueness.
@article{TIMM_2011_17_2_a14,
     author = {T. A. Senchonok and V. A. Baransky},
     title = {Classification of elements of small height in lattices of complete multipartite graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {159--173},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a14/}
}
TY  - JOUR
AU  - T. A. Senchonok
AU  - V. A. Baransky
TI  - Classification of elements of small height in lattices of complete multipartite graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 159
EP  - 173
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a14/
LA  - ru
ID  - TIMM_2011_17_2_a14
ER  - 
%0 Journal Article
%A T. A. Senchonok
%A V. A. Baransky
%T Classification of elements of small height in lattices of complete multipartite graphs
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 159-173
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a14/
%G ru
%F TIMM_2011_17_2_a14
T. A. Senchonok; V. A. Baransky. Classification of elements of small height in lattices of complete multipartite graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 159-173. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a14/