Classification of elements of small height in lattices of complete multipartite graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 159-173
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The purpose of the paper is to classify elements of height 2 and 3 in lattices $NPL(n,t)$ of complete multipartite graphs for $t\ge4$. In addition, lower floors of the lattices $NPL(n,t)$ are described and information on two chromatic invariants is specified. This information is used for studying the chromatic uniqueness of complete multipartite graphs.
Mots-clés : integer partition, complete multipartite graph
Keywords: lattice, graph, chromatic polynomial, chromatic uniqueness.
@article{TIMM_2011_17_2_a14,
     author = {T. A. Senchonok and V. A. Baransky},
     title = {Classification of elements of small height in lattices of complete multipartite graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {159--173},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a14/}
}
TY  - JOUR
AU  - T. A. Senchonok
AU  - V. A. Baransky
TI  - Classification of elements of small height in lattices of complete multipartite graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 159
EP  - 173
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a14/
LA  - ru
ID  - TIMM_2011_17_2_a14
ER  - 
%0 Journal Article
%A T. A. Senchonok
%A V. A. Baransky
%T Classification of elements of small height in lattices of complete multipartite graphs
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 159-173
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a14/
%G ru
%F TIMM_2011_17_2_a14
T. A. Senchonok; V. A. Baransky. Classification of elements of small height in lattices of complete multipartite graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 159-173. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a14/

[1] Endryus G., Teoriya razbienii, Nauka, M., 1982, 256 pp. | MR

[2] Baranskii V. A., Koroleva T. A., “Reshetka razbienii naturalnogo chisla”, Dokl. RAN, 418:4 (2008), 439–442 | MR

[3] Asanov M. O., Baranskii V. A., Rasin V. V., Diskretnaya matematika: grafy, matroidy, algoritmy, “Lan”, SPb., 2010, 368 pp.

[4] Read R. C., “An introduction to chromatic polynomials”, J. Comb. Theory, 4 (1968), 52–71 | DOI | MR

[5] Chao C. Y., Whitehead (Jr.) E. G., “On chromatic equivalence of graphs”, Theory and Appl. Graphs, 642 (1978), 121–131 | DOI | MR | Zbl

[6] Zhao H., Chromaticity and adjoint polynomials of graphs, Wohrmann Print Service, Zutphen, 2005, 169 pp. | MR

[7] Chao C. Y., Novacky (Jr.) G. A., “On maximally saturated graphs”, Discrete Math., 41 (1982), 139–143 | DOI | MR | Zbl

[8] Baranskii V. A., Koroleva T. A., “Khromaticheskaya opredelyaemost atomov v reshetkakh polnykh mnogodolnykh grafov”, Trudy Instituta matematiki i mekhaniki UrO RAN, 13, no. 3, 2007, 22–29

[9] Koroleva T. A., “Khromaticheskaya opredelyaemost nekotorykh polnykh trekhdolnykh grafov. I”, Trudy Instituta matematiki i mekhaniki UrO RAN, 13, no. 3, 2007, 65–83

[10] Koroleva T. A., “Khromaticheskaya opredelyaemost nekotorykh polnykh trekhdolnykh grafov. II”, Izv. Ural. gos. un-ta, 2010, no. 74, 39–56

[11] Baranskii V. A., Koroleva T. A., “Khromaticheskaya opredelyaemost nekotorykh polnykh trekhdolnykh grafov”, Izv. Ural. gos. un-ta, 2010, no. 74, 5–26

[12] Koh K. M., Teo K. L., “The search for chromatically unique graphs”, Graphs Combin., 6 (1990), 259–285 | DOI | MR | Zbl