Optimal boundary control by displacement at one end of a~string under a~given elastic force at the other end
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 151-158
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of optimal boundary control by displacement at one end of a string in the presence of a specified force mode at the other end is studied in the sense of a generalized solution of the corresponding mixed initial- boundary value problem from a Sobolev space. The problem of choosing an optimal boundary control from the infinite number of admissible controls is solved. A generalized solution of the mixed initial-boundary value problem is constructed explicitly and the uniqueness of the solution is proved.
Keywords:
optimal control, boundary control, hyperbolic equations, wave equation.
@article{TIMM_2011_17_2_a13,
author = {E. I. Moiseev and A. A. Kholomeeva},
title = {Optimal boundary control by displacement at one end of a~string under a~given elastic force at the other end},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {151--158},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a13/}
}
TY - JOUR AU - E. I. Moiseev AU - A. A. Kholomeeva TI - Optimal boundary control by displacement at one end of a~string under a~given elastic force at the other end JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 151 EP - 158 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a13/ LA - ru ID - TIMM_2011_17_2_a13 ER -
%0 Journal Article %A E. I. Moiseev %A A. A. Kholomeeva %T Optimal boundary control by displacement at one end of a~string under a~given elastic force at the other end %J Trudy Instituta matematiki i mehaniki %D 2011 %P 151-158 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a13/ %G ru %F TIMM_2011_17_2_a13
E. I. Moiseev; A. A. Kholomeeva. Optimal boundary control by displacement at one end of a~string under a~given elastic force at the other end. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 151-158. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a13/