Optimal boundary control by displacement at one end of a string under a given elastic force at the other end
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 151-158
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of optimal boundary control by displacement at one end of a string in the presence of a specified force mode at the other end is studied in the sense of a generalized solution of the corresponding mixed initial- boundary value problem from a Sobolev space. The problem of choosing an optimal boundary control from the infinite number of admissible controls is solved. A generalized solution of the mixed initial-boundary value problem is constructed explicitly and the uniqueness of the solution is proved.
Keywords: optimal control, boundary control, hyperbolic equations, wave equation.
@article{TIMM_2011_17_2_a13,
     author = {E. I. Moiseev and A. A. Kholomeeva},
     title = {Optimal boundary control by displacement at one end of a~string under a~given elastic force at the other end},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {151--158},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a13/}
}
TY  - JOUR
AU  - E. I. Moiseev
AU  - A. A. Kholomeeva
TI  - Optimal boundary control by displacement at one end of a string under a given elastic force at the other end
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 151
EP  - 158
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a13/
LA  - ru
ID  - TIMM_2011_17_2_a13
ER  - 
%0 Journal Article
%A E. I. Moiseev
%A A. A. Kholomeeva
%T Optimal boundary control by displacement at one end of a string under a given elastic force at the other end
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 151-158
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a13/
%G ru
%F TIMM_2011_17_2_a13
E. I. Moiseev; A. A. Kholomeeva. Optimal boundary control by displacement at one end of a string under a given elastic force at the other end. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 151-158. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a13/

[1] Moiseev E. I., Kholomeeva A. A., “Optimalnoe granichnoe upravlenie smescheniem kolebaniyami struny s nelokalnym usloviem nechetnosti pervogo roda”, Differents. uravneniya, 46:11 (2010), 1623–1630 | MR | Zbl

[2] Lions J.-L., “Exact controllability, stabilization and perturbations for distributed systems”, SIAM Rev., 30:2 (1988), 1–68 | DOI | MR | Zbl

[3] Vasilev F. P., “O dvoistvennosti v lineinykh zadachakh upravleniya i nablyudeniya”, Differents. uravneniya, 31:11 (1995), 1893–1900

[4] Butkovskii A. G., Teoriya optimalnogo granichnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965, 474 pp. | MR

[5] Egorov A. I., “Optimalnye protsessy v sistemakh s raspredelennymi parametrami i nekotorye zadachi teorii invariantnosti”, Izv. AN SSSR. Matematika, 29:6 (1965), 1205–1260 | MR | Zbl

[6] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965, 615 pp. | MR

[7] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2006, 570 pp.

[8] Moiseev E. I., “O bazisnosti sistem sinusov i kosinusov”, Dokl. RAN, 275:4 (1984), 794–798 | MR | Zbl

[9] Ilin V. A., Moiseev E. I., “Optimizatsiya granichnykh upravlenii kolebaniyami struny”, Uspekhi mat. nauk, 60:6 (2005), 89–114 | MR | Zbl

[10] Bloshanskaya L. I., Smirnov I. N., “Optimalnoe granichnoe upravlenie uprugoi siloi na odnom kontse i smescheniem na vtorom kontse za proizvolnyi dostatochno bolshoi promezhutok vremeni dlya zadachi kolebaniya struny”, Differents. uravneniya, 45:6 (2009), 860–870 | MR | Zbl

[11] Moiseev E. I., “Optimalnoe granichnoe upravlenie smescheniem v $W^1_p$ strunoi so svobodnym kontsom”, Differents. uravneniya, 44:5 (2008), 709–711 | MR | Zbl