Adjoint equations and iterative algorithms in problems of variational data assimilation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 136-150

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the theory of adjoint equations, iterative algorithms for solving one class of problems of assimilating data for the reconstruction of the initial condition are developed and substantiated. The iterative processes are optimized with the use of the spectral properties of control operators. The results are illustrated by the example of the quasi-local model of turbulent heat transfer in the ocean.
Mots-clés : adjoint equations, variational data assimilation
Keywords: optimal control, iterative algorithms.
@article{TIMM_2011_17_2_a12,
     author = {G. I. Marchuk and V. P. Shutyaev},
     title = {Adjoint equations and iterative algorithms in problems of variational data assimilation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {136--150},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a12/}
}
TY  - JOUR
AU  - G. I. Marchuk
AU  - V. P. Shutyaev
TI  - Adjoint equations and iterative algorithms in problems of variational data assimilation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 136
EP  - 150
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a12/
LA  - ru
ID  - TIMM_2011_17_2_a12
ER  - 
%0 Journal Article
%A G. I. Marchuk
%A V. P. Shutyaev
%T Adjoint equations and iterative algorithms in problems of variational data assimilation
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 136-150
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a12/
%G ru
%F TIMM_2011_17_2_a12
G. I. Marchuk; V. P. Shutyaev. Adjoint equations and iterative algorithms in problems of variational data assimilation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 136-150. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a12/