Voir la notice du chapitre de livre
Keywords: optimal control, iterative algorithms.
@article{TIMM_2011_17_2_a12,
author = {G. I. Marchuk and V. P. Shutyaev},
title = {Adjoint equations and iterative algorithms in problems of variational data assimilation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {136--150},
year = {2011},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a12/}
}
TY - JOUR AU - G. I. Marchuk AU - V. P. Shutyaev TI - Adjoint equations and iterative algorithms in problems of variational data assimilation JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 136 EP - 150 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a12/ LA - ru ID - TIMM_2011_17_2_a12 ER -
G. I. Marchuk; V. P. Shutyaev. Adjoint equations and iterative algorithms in problems of variational data assimilation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 136-150. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a12/
[1] Agoshkov V. I., Marchuk G. I., “On solvability and numerical solution of data assimilation problems”, Russ. J. Numer. Anal. Math. Modelling, 8:1 (1993), 1–16 | DOI | MR | Zbl
[2] Agoshkov V. I., Parmuzin E. I., Shutyaev V. P., “Chislennyi algoritm variatsionnoi assimilyatsii dannykh nablyudenii o temperature poverkhnosti okeana”, Zhurn. vych. matematiki i mat. fiziki, 48:8 (2008), 1371–1391 | MR | Zbl
[3] Alekseev V. V., Zalesnyi V. B., “Chislennaya model krupnomasshtabnoi dinamiki okeana”, Vychislitel. protsessy i sistemy, no. 10, eds. G. I. Marchuk, Nauka, M., 1984, 232–252
[4] Gajewski H., Gröeger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Acad. Verlag, Berlin, 1974, 336 pp. | MR
[5] Gejadze I., Le Dimet F.-X., Shutyaev V. P., “On analysis error covariances in variational data assimilation”, SIAM J. Sci. Comput., 30:4 (2008), 1847–1874 | DOI | MR
[6] Gejadze I., Le Dimet F.-X., Shutyaev V. P., “On optimal solution error covariances in variational data assimilation problems”, J. Comp. Phys., 229:6 (2010), 2159–2178 | DOI | MR | Zbl
[7] Glowinski R., Lions J.-L., “Exact and approximate controllability for distributed parameter systems”, Acta Numerica, 1 (1994), 269–378 | DOI | MR
[8] Kazantsev Chr., Moshonkin S. N., Zalesny V. B., “Mathematical modelling of the global ocean dynamics: solvability, numerical algorithm, calculations”, Variability and Predictability of Atmospheric and Oceanic Circulations, MGU, Moscow, 1999, 153–168
[9] Krylov I. A., Chernousko F. L., “O metode posledovatelnykh priblizhenii dlya resheniya zadach optimalnogo upravleniya”, Zhurn. vych. matematiki i mat. fiziki, 2:6 (1962), 1132–1139 | MR | Zbl
[10] Le Dimet F.-X., Talagrand O., “Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects”, Tellus, 38A (1986), 97–110 | DOI
[11] Lions J. L., Contrôle Optimal des Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968, 367 pp. | MR | Zbl
[12] Lions J.-L., “On the controllability of distributed systems”, Proc. Natl. Acad. Sci. USA, 94 (1997), 4828–4835 | DOI | MR | Zbl
[13] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992, 335 pp. | MR | Zbl
[14] Marchuk G. I., Zalesny V. B., “A numerical technique for geophysical data assimilation problem using Pontryagins principle and splitting-up method”, Russ. J. Numer. Anal. Math. Modelling, 8 (1993), 311–326 | DOI | MR | Zbl
[15] Marchuk G. I., Shutyaev V. P., “Iteration methods for solving a data assimilation problem”, Russ. J. Numer. Anal. Math. Modelling, 9 (1994), 265–279 | DOI | MR | Zbl
[16] Marchuk G. I., Agoshkov V. I., Shutyaev V. P., Adjoint equations and perturbation algorothms in nonlinear problems, CRC Press Inc., New York, 1996, 275 pp. | MR
[17] Marchuk G., Shutyaev V., Zalesny V., “Approaches to the solution of data assimilation problems”, Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, 489–497 | Zbl
[18] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981, 454 pp. | MR
[19] Parmuzin E. I., Shutyaev V. P., “Numerical analysis of iterative methods for solving evolution data assimilation problems”, Russ. J. Numer. Anal. Math. Modelling, 14:3 (1999), 275–289 | DOI | MR | Zbl
[20] Parmuzin E., Shutyaev V., “Variational data assimilation for a nonstationary heat conduction problem with nonlinear diffusion”, Russ. J. Numer. Anal. Math. Modelling, 20:1 (2005), 81–95 | DOI | MR | Zbl
[21] Parmuzin E. I., Shutyaev V. P., Diansky N. A., “Numerical solution of a variational data assimilation problem for a 3D ocean thermohydrodynamics model with a nonlinear vertical heat exchange”, Russ. J. Numer. Anal. Math. Modelling, 22:2 (2007), 177–198 | DOI | MR | Zbl
[22] L. S. Pontryagin [et al.], The mathematical theory of optimal processes, John Wiley, New York, 1962, 365 pp. | MR | Zbl
[23] Schmidt G. A., Mysak L. A., “The stability of a zonally averaged thermohaline circulation model”, Tellus, 48A (1996), 158–178
[24] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl
[25] Shutyaev V. P., Operatory upravleniya i iteratsionnye algoritmy v zadachakh variatsionnogo usvoeniya dannykh, Nauka, M., 2001, 239 pp. | MR | Zbl