Adjoint equations and iterative algorithms in problems of variational data assimilation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 136-150
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Based on the theory of adjoint equations, iterative algorithms for solving one class of problems of assimilating data for the reconstruction of the initial condition are developed and substantiated. The iterative processes are optimized with the use of the spectral properties of control operators. The results are illustrated by the example of the quasi-local model of turbulent heat transfer in the ocean.
Mots-clés : adjoint equations, variational data assimilation
Keywords: optimal control, iterative algorithms.
@article{TIMM_2011_17_2_a12,
     author = {G. I. Marchuk and V. P. Shutyaev},
     title = {Adjoint equations and iterative algorithms in problems of variational data assimilation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {136--150},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a12/}
}
TY  - JOUR
AU  - G. I. Marchuk
AU  - V. P. Shutyaev
TI  - Adjoint equations and iterative algorithms in problems of variational data assimilation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 136
EP  - 150
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a12/
LA  - ru
ID  - TIMM_2011_17_2_a12
ER  - 
%0 Journal Article
%A G. I. Marchuk
%A V. P. Shutyaev
%T Adjoint equations and iterative algorithms in problems of variational data assimilation
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 136-150
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a12/
%G ru
%F TIMM_2011_17_2_a12
G. I. Marchuk; V. P. Shutyaev. Adjoint equations and iterative algorithms in problems of variational data assimilation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 136-150. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a12/

[1] Agoshkov V. I., Marchuk G. I., “On solvability and numerical solution of data assimilation problems”, Russ. J. Numer. Anal. Math. Modelling, 8:1 (1993), 1–16 | DOI | MR | Zbl

[2] Agoshkov V. I., Parmuzin E. I., Shutyaev V. P., “Chislennyi algoritm variatsionnoi assimilyatsii dannykh nablyudenii o temperature poverkhnosti okeana”, Zhurn. vych. matematiki i mat. fiziki, 48:8 (2008), 1371–1391 | MR | Zbl

[3] Alekseev V. V., Zalesnyi V. B., “Chislennaya model krupnomasshtabnoi dinamiki okeana”, Vychislitel. protsessy i sistemy, no. 10, eds. G. I. Marchuk, Nauka, M., 1984, 232–252

[4] Gajewski H., Gröeger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Acad. Verlag, Berlin, 1974, 336 pp. | MR

[5] Gejadze I., Le Dimet F.-X., Shutyaev V. P., “On analysis error covariances in variational data assimilation”, SIAM J. Sci. Comput., 30:4 (2008), 1847–1874 | DOI | MR

[6] Gejadze I., Le Dimet F.-X., Shutyaev V. P., “On optimal solution error covariances in variational data assimilation problems”, J. Comp. Phys., 229:6 (2010), 2159–2178 | DOI | MR | Zbl

[7] Glowinski R., Lions J.-L., “Exact and approximate controllability for distributed parameter systems”, Acta Numerica, 1 (1994), 269–378 | DOI | MR

[8] Kazantsev Chr., Moshonkin S. N., Zalesny V. B., “Mathematical modelling of the global ocean dynamics: solvability, numerical algorithm, calculations”, Variability and Predictability of Atmospheric and Oceanic Circulations, MGU, Moscow, 1999, 153–168

[9] Krylov I. A., Chernousko F. L., “O metode posledovatelnykh priblizhenii dlya resheniya zadach optimalnogo upravleniya”, Zhurn. vych. matematiki i mat. fiziki, 2:6 (1962), 1132–1139 | MR | Zbl

[10] Le Dimet F.-X., Talagrand O., “Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects”, Tellus, 38A (1986), 97–110 | DOI

[11] Lions J. L., Contrôle Optimal des Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968, 367 pp. | MR | Zbl

[12] Lions J.-L., “On the controllability of distributed systems”, Proc. Natl. Acad. Sci. USA, 94 (1997), 4828–4835 | DOI | MR | Zbl

[13] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992, 335 pp. | MR | Zbl

[14] Marchuk G. I., Zalesny V. B., “A numerical technique for geophysical data assimilation problem using Pontryagins principle and splitting-up method”, Russ. J. Numer. Anal. Math. Modelling, 8 (1993), 311–326 | DOI | MR | Zbl

[15] Marchuk G. I., Shutyaev V. P., “Iteration methods for solving a data assimilation problem”, Russ. J. Numer. Anal. Math. Modelling, 9 (1994), 265–279 | DOI | MR | Zbl

[16] Marchuk G. I., Agoshkov V. I., Shutyaev V. P., Adjoint equations and perturbation algorothms in nonlinear problems, CRC Press Inc., New York, 1996, 275 pp. | MR

[17] Marchuk G., Shutyaev V., Zalesny V., “Approaches to the solution of data assimilation problems”, Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, 489–497 | Zbl

[18] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981, 454 pp. | MR

[19] Parmuzin E. I., Shutyaev V. P., “Numerical analysis of iterative methods for solving evolution data assimilation problems”, Russ. J. Numer. Anal. Math. Modelling, 14:3 (1999), 275–289 | DOI | MR | Zbl

[20] Parmuzin E., Shutyaev V., “Variational data assimilation for a nonstationary heat conduction problem with nonlinear diffusion”, Russ. J. Numer. Anal. Math. Modelling, 20:1 (2005), 81–95 | DOI | MR | Zbl

[21] Parmuzin E. I., Shutyaev V. P., Diansky N. A., “Numerical solution of a variational data assimilation problem for a 3D ocean thermohydrodynamics model with a nonlinear vertical heat exchange”, Russ. J. Numer. Anal. Math. Modelling, 22:2 (2007), 177–198 | DOI | MR | Zbl

[22] L. S. Pontryagin [et al.], The mathematical theory of optimal processes, John Wiley, New York, 1962, 365 pp. | MR | Zbl

[23] Schmidt G. A., Mysak L. A., “The stability of a zonally averaged thermohaline circulation model”, Tellus, 48A (1996), 158–178

[24] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[25] Shutyaev V. P., Operatory upravleniya i iteratsionnye algoritmy v zadachakh variatsionnogo usvoeniya dannykh, Nauka, M., 2001, 239 pp. | MR | Zbl