Numerical encoding of sampled controls and an approximation metric criterion for the solvability of an aiming game problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 105-124
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A game problem of guaranteed aiming in the class of positional strategies is considered for a conflict controlled system with affine scalar controls in the equation of the system. Simplified sampled analogs of quasi-strategies, i.e., of nonanticipating program reactions of the first player to the controls of the second player, are introduced. The nonanticipating property is characterized in metric terms with the use of numerical images (codes) of argument controls and reaction controls. A class of nonanticipating transformations is introduced that is approximately equivalent by the criterion of the solvability of the game problem to the class of positional strategies. The elements of this class as transformations of the numerical codes of controls are characterized by the 1-Lipschitz property. A numerical algorithm for checking the solvability of the problem in this class is described. The complexity order of the algorithm is close to that of the approximation variant of the classical program construction.
Keywords: positional differential games, quasi-strategies, numerical methods.
@article{TIMM_2011_17_2_a10,
     author = {A. V. Kryazhimskii},
     title = {Numerical encoding of sampled controls and an approximation metric criterion for the solvability of an aiming game problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {105--124},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a10/}
}
TY  - JOUR
AU  - A. V. Kryazhimskii
TI  - Numerical encoding of sampled controls and an approximation metric criterion for the solvability of an aiming game problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 105
EP  - 124
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a10/
LA  - ru
ID  - TIMM_2011_17_2_a10
ER  - 
%0 Journal Article
%A A. V. Kryazhimskii
%T Numerical encoding of sampled controls and an approximation metric criterion for the solvability of an aiming game problem
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 105-124
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a10/
%G ru
%F TIMM_2011_17_2_a10
A. V. Kryazhimskii. Numerical encoding of sampled controls and an approximation metric criterion for the solvability of an aiming game problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 105-124. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a10/

[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 458 pp. | MR | Zbl

[3] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl

[4] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[5] Krasovskii A. N., Subbotin A. I., Game-theoretical control problems, Springer Verlag, New-York, 1988, 517 pp. | MR | Zbl

[6] Krasovskii A. N., Krasovskii N. N., Control under lack of information, Birkhäuser, Boston, 1995, 322 pp. | MR

[7] Kryazhimskii A. V., Osipov Yu. S., “Approksimatsionnaya linearizatsiya v differentsialnykh igrakh navedeniya-ukloneniya”, Trudy Matematicheskogo instituta im. V. A. Steklova RAN, 220, 1998, 173–194 | MR | Zbl

[8] Kryazhimskii A. V., Osipov Yu. S., “Ob odnom algoritmicheskom kriterii razreshimosti igrovykh zadach dlya lineinykh upravlyaemykh sistem”, Trudy Instituta matematiki i mekhaniki UrO RAN, 6, no. 1, 2000, 131–140 | MR | Zbl

[9] Quincampoix M., Veliov V. M., “Optimal control of uncertain systems with incomplete information for the disturbances”, SIAM J. Control Optim., 43:4 (2005), 1373–1399 | DOI | MR | Zbl

[10] Osipov Yu. S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Uspekhi mat. nauk, 61:4(370) (2006), 25–76 | MR | Zbl

[11] Kryazhimskii A. V., Osipov Yu. S., “Idealizirovannye pakety programm i zadachi pozitsionnogo upravleniya s nepolnoi informatsiei”, Trudy Instituta matematiki i mekhaniki Uro RAN, 15, no. 3, 2009, 139–157

[12] Roxin E., “Axiomatic approach in differential games”, J. Opt. Theory Appl., 3 (1969), 156–163 | DOI | MR

[13] Rull-Nardzevski C., “A theory of pursuit and evasion”, Advances in Game Theory, Princeton Univ. Press, 1964, 113–126 | MR

[14] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR