Object and observer: A surveillance problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 7-19
Voir la notice du chapitre de livre
The property of the visibility of an object for an observer is studied in the case when the motion takes place in a space with a fixed bodily set impeding the visibility. Directional derivatives of the visibility function are calculated. The problem of tracking the object by the observer is considered, when the object aims to minimize and the observer aims to maximize the maximum of the visibility function. An algorithm for constructing a trajectory that is best for the object is given for the case when the observer acts optimally.
Mots-clés :
object, observer
Keywords: visibility function, tracking problem, trajectory.
Keywords: visibility function, tracking problem, trajectory.
@article{TIMM_2011_17_2_a1,
author = {V. I. Berdyshev},
title = {Object and observer: {A~surveillance} problem},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {7--19},
year = {2011},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a1/}
}
V. I. Berdyshev. Object and observer: A surveillance problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 7-19. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a1/
[1] Berdyshev V. I., “Vidimost ob'ekta dlya nablyudatelya s netochno zadannymi koordinatami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 21–28
[2] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972, 368 pp. | MR
[3] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR
[4] Fitzpatric S., “Metric projections and the differentiability of distance functions”, Austral. Math. Soc., 22:2 (1980), 291–312 | DOI | MR | Zbl