Reconstruction of controls in hyperbolic systems by Tikhonov's method with nonsmooth stabilizers
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 99-108
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of reconstructing unknown controls in hyperbolic systems by the results of approximate observations of the motions of these systems is considered. To solve the problem, Tikhonovs method with a stabilizer containing the total time variation of the control is used. The use of such nondifferentiable stabilizer allows us to obtain more precise results in some cases than the approximation of the desired control in Lebesgue spaces. In particular, this method provides the piecewise uniform convergence of regularized approximations and makes possible the numerical reconstruction of the subtle structure of the desired control.
Keywords: controlled hyperbolic system, inverse problems of dynamics, Tikhonov's regularization method, classical variation
Mots-clés : piecewise uniform convergence.
@article{TIMM_2011_17_1_a9,
     author = {A. I. Korotkii and E. I. Gribanova},
     title = {Reconstruction of controls in hyperbolic systems by {Tikhonov's} method with nonsmooth stabilizers},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {99--108},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a9/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - E. I. Gribanova
TI  - Reconstruction of controls in hyperbolic systems by Tikhonov's method with nonsmooth stabilizers
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 99
EP  - 108
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a9/
LA  - ru
ID  - TIMM_2011_17_1_a9
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A E. I. Gribanova
%T Reconstruction of controls in hyperbolic systems by Tikhonov's method with nonsmooth stabilizers
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 99-108
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a9/
%G ru
%F TIMM_2011_17_1_a9
A. I. Korotkii; E. I. Gribanova. Reconstruction of controls in hyperbolic systems by Tikhonov's method with nonsmooth stabilizers. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 99-108. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a9/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR

[2] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[3] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 288 pp. | MR

[4] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976, 392 pp. | MR

[5] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[6] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[7] Osipov Yu. S., Kryazhimskii A. V., Inverse problems of ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[8] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999, 237 pp.

[9] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[10] Chernousko F. L., Melikyan A. A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978, 270 pp. | MR

[11] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 623 pp. | MR

[12] Krutko P. D., Obratnye zadachi dinamiki upravlyaemykh sistem. Nelineinye modeli, Nauka, M., 1988, 332 pp. | MR

[13] Ageev A. L., “Regulyarizatsiya nelineinykh operatornykh uravnenii na klasse razryvnykh funktsii”, Zhurn. vychisl. matematiki i mat. fiziki, 20:4 (1980), 819–826 | MR | Zbl

[14] Vasin V. V., “Regulyarizatsiya i diskretnaya approksimatsiya nekorrektnykh zadach v prostranstve funktsii ogranichennoi variatsii”, Dokl. RAN, 376:1 (2001), 11–14 | MR

[15] Vasin V. V., “Ustoichivaya approksimatsiya negladkikh reshenii nekorrektno postavlennykh zadach”, Dokl. RAN, 402:5 (2005), 586–589 | MR

[16] Vasin V. V., “Approksimatsiya negladkikh reshenii lineinykh nekorrektnykh zadach”, Trudy Instituta matematiki i mekhaniki UrO RAN, 12, no. 1, 2006, 64–77 | MR | Zbl

[17] Vasin V. V., Korotkii M. A., “Tikhonov regularization with nondifferentiable stabilizing functional”, J. Inverse and Ill-Posed Problems, 15:8 (2007), 853–865 | DOI | MR | Zbl

[18] Leonov A. S., “Kusochno-ravnomernaya regulyarizatsiya nekorrektnykh zadach s razryvnymi resheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 22:3 (1982), 516–531 | MR | Zbl

[19] Leonov A. S., Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, LIBROKOM, M., 2010, 326 pp.

[20] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995, 212 pp. | MR | Zbl

[21] Giusti E., Minimal surfaces and functions of bounded variations, Birkhauser, Basel, 1984, 239 pp. | MR | Zbl

[22] Acar R., Vogel C. R., “Analysis of bounded variation penalty method for ill-posed problems”, Inverse Problems, 10 (1994), 1217–1229 | DOI | MR | Zbl

[23] Chavent G., Kunish K., “Regularization of linear least squares problems by total bounded variation control”, Optimization and Calculus of variation, 2 (1997), 359–376 | DOI | MR | Zbl

[24] Vogel C. R., Computation methods for inverse problems, SIAM, Philadelphia, 2002, 183 pp. | MR | Zbl

[25] Korotkii M. A., “Vosstanovlenie upravlenii i parametrov metodom Tikhonova s negladkimi stabilizatorami”, Izv. vuzov. Matematika, 2009, no. 2, 76–82 | MR | Zbl

[26] Korotkii M. A., “Vosstanovlenie upravlenii staticheskim i dinamicheskim metodami regulyarizatsii s negladkimi stabilizatorami”, Prikl. matematika i mekhanika, 73:1 (2009), 39–53 | MR

[27] Korotkii M. A., Metod regulyarizatsii Tikhonova s negdadkimi stabilizatorami, Dis. $\dots$ kand. fiz.-mat. nauk, IMM UrO RAN, Ekaterinburg, 2009, 132 pp.

[28] Soboleva D. O., “Rekonstruktsiya upravlenii v parabolicheskikh sistemakh”, Vestn. Buryatskogo gos. un-ta. Matematika i informatika, 2010, no. 9, 59–67

[29] Mikhailova D. O., “Vosstanovlenie upravlenii v parabolicheskikh sistemakh metodom Tikhonova s negladkimi stabilizatorami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 211–227

[30] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[31] Ladyzhenskaya O. A., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[32] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR

[33] Iosida K., Funktsionalnyi analiz, Mir, M., 1967, 624 pp. | MR

[34] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[35] Vasilev F. P., Metody optimizatsii, Faktorial, M., 2002, 824 pp.