On autotopies of quasigroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 93-98
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the scheme of a quasigroup and prove in Theorem 1 that it is an invariant of the isotopy class of the quasigroup. The scheme of a quasigroup makes it possible in some cases to easily differentiate between nonisotopic quasigroups. We introduce the notions of autotopy of the first kind and of action of an autotopy on elements of a quasigroup. The nonexistence of a quasigroup of order $(4m+2)$ with a transitively acting group of autotopies of the first kind is proved (Theorem 3).
Mots-clés : quasigroup, automorphism
Keywords: Latin square, autotopy.
@article{TIMM_2011_17_1_a8,
     author = {M. E. Eliseev},
     title = {On autotopies of quasigroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {93--98},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a8/}
}
TY  - JOUR
AU  - M. E. Eliseev
TI  - On autotopies of quasigroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 93
EP  - 98
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a8/
LA  - ru
ID  - TIMM_2011_17_1_a8
ER  - 
%0 Journal Article
%A M. E. Eliseev
%T On autotopies of quasigroups
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 93-98
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a8/
%G ru
%F TIMM_2011_17_1_a8
M. E. Eliseev. On autotopies of quasigroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 93-98. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a8/

[1] Belousov V. D., Belyavskaya G. B., Latinskie kvadraty, kvazigruppy i ikh prilozheniya, Shtiintsa, Kishinev, 1989, 75 pp. | MR

[2] Zeifert G., Treflfall V., Topologiya, GONTI, Leningrad, 1938, 400 pp.

[3] Suprunenko D. A., Gruppy podstanovok, Nauka i tekhnika, Minsk, 1996, 366 pp.

[4] Norton D. A., Stein S. K., “An integer associated with latin squares”, Proc. Amer. Math. Soc ., 7 (1956), 331–334 | DOI | MR | Zbl