Ill-posed problem of reconstructing the population magnitude in Hutchinsons mathematical model
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 70-84
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The ill-posed problem of reconstructing the population magnitude is considered for Hutchinsons equation. Asymptotic regularized solutions are constructed on a finite interval of the negative half-line.
Keywords: Hutchinson's equation, ill-posed problem, asymptotic methods.
@article{TIMM_2011_17_1_a6,
     author = {Yu. F. Dolgii and P. G. Surkov},
     title = {Ill-posed problem of reconstructing the population magnitude in {Hutchinsons} mathematical model},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {70--84},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a6/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
AU  - P. G. Surkov
TI  - Ill-posed problem of reconstructing the population magnitude in Hutchinsons mathematical model
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 70
EP  - 84
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a6/
LA  - ru
ID  - TIMM_2011_17_1_a6
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%A P. G. Surkov
%T Ill-posed problem of reconstructing the population magnitude in Hutchinsons mathematical model
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 70-84
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a6/
%G ru
%F TIMM_2011_17_1_a6
Yu. F. Dolgii; P. G. Surkov. Ill-posed problem of reconstructing the population magnitude in Hutchinsons mathematical model. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 70-84. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a6/

[1] Lek D., Chislennost zhivotnykh i ee regulyatsiya v prirode, IL, M., 1957, 346 pp.

[2] Doklad o sostoyanii i okhrane okruzhayuschei sredy Vologodskoi oblasti v 2006 godu, Pravitelstvo Vologodskoi oblasti, departament prirodnykh resursov i okhrany okruzhayuschei sredy Vologodskoi oblasti, Vologda, 2007, 222 pp.

[3] Kolesov A. Yu., Kolesov Yu. S., Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii, Trudy Matematicheskogo instituta RAN im. V. A. Steklova, 199, 1993, 123 pp. | MR | Zbl

[4] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985, 280 pp. | MR

[5] Shampain L. F., Gladvel I., Tompson S., Reshenie obyknovennykh differentsialnykh uravnenii s ispolzovaniem MATLAB, Lan, SPb., 2009, 304 pp.

[6] Zakharov A. A., Rysina N. V., “Dinamika chislennosti vida, obitayuschego v neodnorodnoi srede i imeyuschego neodnorodnyi koeffitsient lineinogo rosta”, Issledovaniya po ustoichivosti i teorii kolebanii, Mezhvuz. temat. sb., YaGU, Yaroslavl, 1982, 55–65

[7] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986, 288 pp. | MR

[8] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972, 416 pp. | MR

[9] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR | Zbl

[10] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 424 pp. | MR

[11] Danilkin A. A., Oleni (Cervidae), GEOS, M., 1999, 552 pp.