On external estimates for reachable sets of nonlinear control systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 60-69
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the problem of constructing external estimates for reachable sets of a nonlinear control system. The estimates are constructed in the form of level sets of smooth functions in the space of states satisfying differential inequalities. In the system under consideration, the linear part is found, for which the corresponding functions are assumed to be known. The method proposed for estimating trajectories of a nonlinear system is based on modifying estimates for the linear part and on applying the comparison principle.
Keywords: control system, reachable set, comparison principle.
@article{TIMM_2011_17_1_a5,
     author = {M. I. Gusev},
     title = {On external estimates for reachable sets of nonlinear control systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {60--69},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a5/}
}
TY  - JOUR
AU  - M. I. Gusev
TI  - On external estimates for reachable sets of nonlinear control systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 60
EP  - 69
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a5/
LA  - ru
ID  - TIMM_2011_17_1_a5
ER  - 
%0 Journal Article
%A M. I. Gusev
%T On external estimates for reachable sets of nonlinear control systems
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 60-69
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a5/
%G ru
%F TIMM_2011_17_1_a5
M. I. Gusev. On external estimates for reachable sets of nonlinear control systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 60-69. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a5/

[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[2] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl

[3] Krasovski N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, New York, 1988, 517 pp. | MR | Zbl

[4] Osipov Yu. S., Kryazhimskii A. V., Inverse problem of ordinary differential equations: dynamic solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[5] Chernousko F. L., State estimation for dynamic systems, CRC Press, Boca Raton, 1994, 304 pp.

[6] Lempio F., Veliov V. M., “Discrete approximations to differential inclusions”, GAMM Mitt., 21:2 (1998), 101–135 | MR

[7] Guseinov Kh. I., Moiseev A. N., Ushakov V. N., “Ob approksimatsii oblastei dostizhimosti sistem upravleniya”, Prikl. matematika i mekhanika, 1998, no. 2, 179–186 | MR

[8] Patsko V. S., Pyatko S. G., Fedotov A. A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 8–16 | MR | Zbl

[9] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Systems Control: Foundations Applications, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl

[10] Kurzhanski A. B., Varaiya P., “Reachability analysis for uncertain systems – the ellipsoidal technique”, Dyn. Contin. Discrete Impulse Syst. Ser. B, 2002, no. 3, 347–367 | MR | Zbl

[11] Kostousova E. K., “Vneshnee i vnutrennee otsenivanie oblastei dostizhimosti pri pomoschi parallelotopov”, Vychisl. tekhnologii, 3:2 (1998), 11–20 | MR | Zbl

[12] Filippova T. F., Estimates of trajectory tubes of uncertain nonlinear control systems, Lecture Notes in Computer Sciences, 5910, Springer-Verlag, Berlin, 2010, 272–279 | Zbl

[13] Sethian J. A., Level set methods and fast marching methods, Cambridge Univ. Press, New York, 1999, 378 pp. | MR | Zbl

[14] Kurzhanski A. B., Varaiya P., “Dynamic optimization for reachability problems”, J. Optim. Theory Appl., 108:2 (2001), 227–251 | DOI | MR | Zbl

[15] Mitchell I. M., Tomlin C. J., “Overapproximating reachable sets by Hamilton–Jacobi projections”, J. Sci. Comput., 19:1–3 (2003), 323–346 | DOI | MR

[16] Kurzhanskii A. B., “Printsip sravneniya dlya uravnenii Gamiltona–Yakobi v teorii upravleniya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 12, no. 1, Ekaterinburg, 2006, 173–183 | MR | Zbl

[17] Gusev M. I., “Otsenki mnozhestv dostizhimosti mnogomernykh upravlyaemykh sistem s nelineinymi perekrestnymi svyazyami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 82–94

[18] Walter W., Differential and integral inequalities, Springer, Berlin, 1970, 352 pp. | MR

[19] Pachpatte B. G., Inequalities for differential and integral equations, Mathematics in Science and Engineering, 197, Academic Press, London, 1986, 611 pp. | MR | Zbl

[20] Robinson S. M., “An application of error bounds for convex programming in a linear space”, SIAM J. Control Optim., 13 (1975), 271–273 | DOI | MR | Zbl

[21] Matrosov B. M., Anapolskii L. Yu., Vasilev S. N., Metod sravneniya v matematicheskoi teorii sistem, Nauka, Novosibirsk, 1980, 479 pp.