Voir la notice du chapitre de livre
@article{TIMM_2011_17_1_a5,
author = {M. I. Gusev},
title = {On external estimates for reachable sets of nonlinear control systems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {60--69},
year = {2011},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a5/}
}
M. I. Gusev. On external estimates for reachable sets of nonlinear control systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 60-69. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a5/
[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR
[2] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl
[3] Krasovski N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, New York, 1988, 517 pp. | MR | Zbl
[4] Osipov Yu. S., Kryazhimskii A. V., Inverse problem of ordinary differential equations: dynamic solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl
[5] Chernousko F. L., State estimation for dynamic systems, CRC Press, Boca Raton, 1994, 304 pp.
[6] Lempio F., Veliov V. M., “Discrete approximations to differential inclusions”, GAMM Mitt., 21:2 (1998), 101–135 | MR
[7] Guseinov Kh. I., Moiseev A. N., Ushakov V. N., “Ob approksimatsii oblastei dostizhimosti sistem upravleniya”, Prikl. matematika i mekhanika, 1998, no. 2, 179–186 | MR
[8] Patsko V. S., Pyatko S. G., Fedotov A. A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 8–16 | MR | Zbl
[9] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Systems Control: Foundations Applications, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl
[10] Kurzhanski A. B., Varaiya P., “Reachability analysis for uncertain systems – the ellipsoidal technique”, Dyn. Contin. Discrete Impulse Syst. Ser. B, 2002, no. 3, 347–367 | MR | Zbl
[11] Kostousova E. K., “Vneshnee i vnutrennee otsenivanie oblastei dostizhimosti pri pomoschi parallelotopov”, Vychisl. tekhnologii, 3:2 (1998), 11–20 | MR | Zbl
[12] Filippova T. F., Estimates of trajectory tubes of uncertain nonlinear control systems, Lecture Notes in Computer Sciences, 5910, Springer-Verlag, Berlin, 2010, 272–279 | Zbl
[13] Sethian J. A., Level set methods and fast marching methods, Cambridge Univ. Press, New York, 1999, 378 pp. | MR | Zbl
[14] Kurzhanski A. B., Varaiya P., “Dynamic optimization for reachability problems”, J. Optim. Theory Appl., 108:2 (2001), 227–251 | DOI | MR | Zbl
[15] Mitchell I. M., Tomlin C. J., “Overapproximating reachable sets by Hamilton–Jacobi projections”, J. Sci. Comput., 19:1–3 (2003), 323–346 | DOI | MR
[16] Kurzhanskii A. B., “Printsip sravneniya dlya uravnenii Gamiltona–Yakobi v teorii upravleniya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 12, no. 1, Ekaterinburg, 2006, 173–183 | MR | Zbl
[17] Gusev M. I., “Otsenki mnozhestv dostizhimosti mnogomernykh upravlyaemykh sistem s nelineinymi perekrestnymi svyazyami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 4, 2009, 82–94
[18] Walter W., Differential and integral inequalities, Springer, Berlin, 1970, 352 pp. | MR
[19] Pachpatte B. G., Inequalities for differential and integral equations, Mathematics in Science and Engineering, 197, Academic Press, London, 1986, 611 pp. | MR | Zbl
[20] Robinson S. M., “An application of error bounds for convex programming in a linear space”, SIAM J. Control Optim., 13 (1975), 271–273 | DOI | MR | Zbl
[21] Matrosov B. M., Anapolskii L. Yu., Vasilev S. N., Metod sravneniya v matematicheskoi teorii sistem, Nauka, Novosibirsk, 1980, 479 pp.