Voir la notice du chapitre de livre
@article{TIMM_2011_17_1_a22,
author = {A. G. Chentsov},
title = {Ultrafilters of measurable spaces as generalized solutions in abstract attainability problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {268--293},
year = {2011},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a22/}
}
TY - JOUR AU - A. G. Chentsov TI - Ultrafilters of measurable spaces as generalized solutions in abstract attainability problems JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 268 EP - 293 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a22/ LA - ru ID - TIMM_2011_17_1_a22 ER -
A. G. Chentsov. Ultrafilters of measurable spaces as generalized solutions in abstract attainability problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 268-293. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a22/
[1] Chentsov A. G., “Nekotorye konstruktsii asimptoticheskogo analiza, svyazannye s kompaktifikatsiei Stouna–Chekha”, Sovremennaya matematika i ee prilozheniya, 26, In-t kibernetiki AN Gruzii, Tbilisi, 2005, 119–150 | MR
[2] Chentsov A. G., “Obobschennye mnozhestva prityazheniya i priblizhennye resheniya, ikh formiruyuschie”, Tr. In-ta matematiki i mekhaniki UrO RAN, 10, no. 2, 2004, 178–196 | MR | Zbl
[3] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh upravleniya”, Tr. Mezhdunar. seminara “Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, v. 1, Izd-vo Ural. gos. un-ta, Ekaterinburg, 2006, 48–60 | MR
[4] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Trudy Instituta matematiki i mekhaniki UrO RAN, 12, no. 1, 2006, 216–241 | MR | Zbl
[5] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR
[6] Daffin R. Dzh., “Beskonechnye programmy”, Lineinye neravenstva i smezhnye voprosy, IL, M., 1959, 263–267
[7] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 35 pp. | MR
[8] Chentsov A. G., Finitely additive measures and relaxations of extremal problems, Plenum Publishing Corporation, New York–London–Moscow, 1996, 244 pp. | MR | Zbl
[9] Chentsov A. G., Asymptotic attainability, Kluwer Academic Publishers, Dordrecht–Boston–London, 1997, 322 pp. | MR | Zbl
[10] Cech E., Topological spaces, Academia, Prague, 1966, 893 pp. | MR | Zbl
[11] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR
[12] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981, 431 pp. | MR
[13] Burbaki N., Obschaya topologiya, Nauka, M., 1968, 272 pp. | MR
[14] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR
[15] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl
[16] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 518 pp. | MR
[17] Chentsov A. G., “Some questions of asymptotic analysis: approximate solutions and extension constructions”, Func. Diff. Equations, 12 (2005), 119–148 | MR | Zbl
[18] Chentsov A. G., “Some properties of generalized attraction sets”, Func. Diff. Equations, 13 (2006), 381–415 | MR
[19] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl
[20] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 408 pp. | MR
[21] Chentsov A. G., “Two-valued measures and zero-dimensional topologies”, Funct. Diff. Equations, 9 (2002), 71–89 | MR | Zbl
[22] Chentsov A. G., “Nekotorye svoistva konechno-additivnykh mer i ikh preobrazovanie na osnove gomomorfizmov izmerimykh struktur”, Dokl. RAN, 370:4 (2000), 449–452 | MR | Zbl
[23] Semadeni Z., Banach spaces of continuous functions, PWN, Warszava, 1971, 411 pp. | Zbl
[24] Chentsov A. G., “The nonsequential approximate solutions in problems of asymptotic analysis”, Soochow J. Math., 32:3 (2006), 441–475 | MR | Zbl