The problem of start control for a class of semilinear distributed systems of Sobolev type
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 259-267
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A result on the solvability of the Cauchy problem for a semilinear equation of Sobolev type in a Banach space is obtained with the help of the theory of degenerate operator semigroups. The result is used for investigating the problem of start control in the corresponding system. Abstract results are illustrated by the example of the semilinear Dzektser equation.
Keywords: optimal control, distributed system, semilinear equation.
Mots-clés : Sobolev type equation
@article{TIMM_2011_17_1_a21,
     author = {V. E. Fedorov and M. V. Plekhanova},
     title = {The problem of start control for a~class of semilinear distributed systems of {Sobolev} type},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {259--267},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a21/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - M. V. Plekhanova
TI  - The problem of start control for a class of semilinear distributed systems of Sobolev type
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 259
EP  - 267
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a21/
LA  - ru
ID  - TIMM_2011_17_1_a21
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A M. V. Plekhanova
%T The problem of start control for a class of semilinear distributed systems of Sobolev type
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 259-267
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a21/
%G ru
%F TIMM_2011_17_1_a21
V. E. Fedorov; M. V. Plekhanova. The problem of start control for a class of semilinear distributed systems of Sobolev type. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 259-267. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a21/

[1] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Boston etc., 2003, 216 pp. | MR | Zbl

[2] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007, 734 pp. | Zbl

[3] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR | Zbl

[4] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 350 pp. | Zbl

[5] Sviridyuk G. A., Efremov A. A., “Optimalnoe upravlenie lineinymi uravneniyami tipa Soboleva s otnositelno $p$-sektorialnymi operatorami”, Differents. uravneniya, 31:11 (1995), 1912–1919 | MR | Zbl

[6] Plekhanova M. V., Fedorov V. E., “Zadacha optimalnogo upravleniya dlya odnogo klassa vyrozhdennykh uravnenii”, Izv. RAN. Teoriya i sistemy upravleniya, 2004, no. 5, 40–44 | MR

[7] Fedorov V. E., Plekhanova M. V., “Optimalnoe upravlenie lineinymi uravneniyami sobolevskogo tipa”, Differents. uravneniya, 40:11 (2004), 1548–1556 | MR | Zbl

[8] Dzektser E. S., “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, Dokl. AN SSSR, 202:5 (1972), 1031–1033

[9] Fedorov V. E., “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173–200 | MR | Zbl

[10] Fedorov V. E., “Svoistva psevdorezolvent i usloviya suschestvovaniya vyrozhdennykh polugrupp operatorov”, Vest. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika, 2009, no. 11(20), 12–19

[11] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983, 446 pp. | MR | Zbl

[12] Plekhanova M. V., Fedorov V. E., “Kriterii optimalnosti v zadache upravleniya dlya lineinogo uravneniya sobolevskogo tipa”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 37–44 | MR