Regularized extragradient method for finding a saddle point in an optimal control problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 27-37
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose a regularized variant of the extragradient method of saddle point search for a convex-concave functional defined on solutions of control systems of linear ordinary differential equations. We assume that the input data of the problem are given inaccurately. Since the problem under consideration is, generally speaking, unstable under a disturbance in the input data, we propose a regularized variant of the extragradient method, investigate its convergence, and construct a regularizing operator. The regularization parameters of the method agree asymptotically with the disturbance level of the input data.
Keywords: extragradient method, optimal control, saddle point, regularization.
@article{TIMM_2011_17_1_a2,
     author = {F. P. Vasil'ev and E. V. Khoroshilova and A. S. Antipin},
     title = {Regularized extragradient method for finding a~saddle point in an optimal control problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {27--37},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a2/}
}
TY  - JOUR
AU  - F. P. Vasil'ev
AU  - E. V. Khoroshilova
AU  - A. S. Antipin
TI  - Regularized extragradient method for finding a saddle point in an optimal control problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 27
EP  - 37
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a2/
LA  - ru
ID  - TIMM_2011_17_1_a2
ER  - 
%0 Journal Article
%A F. P. Vasil'ev
%A E. V. Khoroshilova
%A A. S. Antipin
%T Regularized extragradient method for finding a saddle point in an optimal control problem
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 27-37
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a2/
%G ru
%F TIMM_2011_17_1_a2
F. P. Vasil'ev; E. V. Khoroshilova; A. S. Antipin. Regularized extragradient method for finding a saddle point in an optimal control problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 27-37. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a2/

[1] Oben Zh. P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988, 510 pp. | MR

[2] Vasilev F. P., Khoroshilova E. V., Antipin A. S., “Ekstragradientnyi metod poiska sedlovoi tochki v zadache optimalnogo upravleniya”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matematika i kibernetika, 2010, no. 3, 18–22 | MR

[3] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR

[4] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 128 pp. | MR

[5] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002, 524 pp.

[6] Antipin A. S., Vasilev F. P., Shpirko S. V., “Regulyarizovannyi ekstragradientnyi metod resheniya zadach ravnovesnogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 43:10 (2003), 1451–1458 | MR | Zbl