On the cubic complexity of three-dimensional polyhedra
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 245-250
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A cubulation of a three-dimensional polyhedron $P$ is understood as a finite family of copies of the standard oriented cube in $\mathbb R^3$ and of orientation-changing isometries of its faces such that the result of gluing together these isometries of the cubes is homeomorphic to $P$. We prove that any three-dimensional polyhedron represented by a cubulation consisting of $n$ cubes possesses a standard triangulation consisting of $6n$ tetrahedra.
Mots-clés : polihedron, triangulation
Keywords: 3-manifold, cubulation, Matveev complexity, cubic complexity.
@article{TIMM_2011_17_1_a19,
     author = {V. V. Tarkaev},
     title = {On the cubic complexity of three-dimensional polyhedra},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {245--250},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a19/}
}
TY  - JOUR
AU  - V. V. Tarkaev
TI  - On the cubic complexity of three-dimensional polyhedra
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 245
EP  - 250
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a19/
LA  - ru
ID  - TIMM_2011_17_1_a19
ER  - 
%0 Journal Article
%A V. V. Tarkaev
%T On the cubic complexity of three-dimensional polyhedra
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 245-250
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a19/
%G ru
%F TIMM_2011_17_1_a19
V. V. Tarkaev. On the cubic complexity of three-dimensional polyhedra. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 245-250. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a19/

[1] G. Amendola, A 3-manifold complexity via immersed surfaces, preprint, 2008, 20 pp., arXiv: 0804.0695v1[math.GT]

[2] Matveev S. V., Teoriya slozhnosti trekhmernykh mnogoobrazii, preprint, Izd-vo Instituta matematiki AN USSR, Kiev, 1988, 32 pp. | MR

[3] Matveev S., Algoritghmic topology and classification of 3-manifolds, Algorithms and Computation in Mathematics, Springer, Berlin–Heidelberg, 2007, 492 pp. | MR