On the cubic complexity of three-dimensional polyhedra
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 245-250
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A cubulation of a three-dimensional polyhedron $P$ is understood as a finite family of copies of the standard oriented cube in $\mathbb R^3$ and of orientation-changing isometries of its faces such that the result of gluing together these isometries of the cubes is homeomorphic to $P$. We prove that any three-dimensional polyhedron represented by a cubulation consisting of $n$ cubes possesses a standard triangulation consisting of $6n$ tetrahedra.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
polihedron, triangulation
Keywords: 3-manifold, cubulation, Matveev complexity, cubic complexity.
                    
                  
                
                
                Keywords: 3-manifold, cubulation, Matveev complexity, cubic complexity.
@article{TIMM_2011_17_1_a19,
     author = {V. V. Tarkaev},
     title = {On the cubic complexity of three-dimensional polyhedra},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {245--250},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a19/}
}
                      
                      
                    V. V. Tarkaev. On the cubic complexity of three-dimensional polyhedra. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 245-250. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a19/
