Dual regularization and Pontryagin's maximum principle in a problem of optimal boundary control for a parabolic equation with nondifferentiable functionals
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 229-244
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of optimal boundary control is considered for a`divergent linear parabolic equation. Equality constraints of the problem are given by nondifferentiable functionals. A dual regularization algorithm stable to errors in initial data is constructed for solving the problem. Pontryagins maximum principle plays the key role in this algorithm.
Keywords: duality, regularization, optimal boundary control, nondifferentiable functional, maximum principle.
@article{TIMM_2011_17_1_a18,
     author = {M. I. Sumin},
     title = {Dual regularization and {Pontryagin's} maximum principle in a~problem of optimal boundary control for a~parabolic equation with nondifferentiable functionals},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {229--244},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a18/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - Dual regularization and Pontryagin's maximum principle in a problem of optimal boundary control for a parabolic equation with nondifferentiable functionals
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 229
EP  - 244
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a18/
LA  - ru
ID  - TIMM_2011_17_1_a18
ER  - 
%0 Journal Article
%A M. I. Sumin
%T Dual regularization and Pontryagin's maximum principle in a problem of optimal boundary control for a parabolic equation with nondifferentiable functionals
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 229-244
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a18/
%G ru
%F TIMM_2011_17_1_a18
M. I. Sumin. Dual regularization and Pontryagin's maximum principle in a problem of optimal boundary control for a parabolic equation with nondifferentiable functionals. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 229-244. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a18/

[1] Sumin M. I., “Optimalnoe upravlenie parabolicheskimi uravneniyami: dvoistvennye chislennye metody, regulyarizatsiya”, Raspredelennye sistemy: optimizatsiya i prilozheniya v ekonomike i naukakh ob okruzhayuschei srede, Sb. dokl. k Mezhdunar. konf., In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2000, 66–69

[2] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zhurn. vychisl. matematiki i mat. fiziki, 44:11 (2004), 2001–2019 | MR | Zbl

[3] Sumin M. I., “Regulyarizovannyi dvoistvennyi algoritm v zadachakh optimalnogo upravleniya dlya raspredelennykh sistem”, Vest. Nizhegorodskogo un-ta. Matematicheskoe modelirovanie i optimalnoe upravlenie, 2006, no. 2(31), 82–101

[4] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matematiki i mat. fiziki, 47:4 (2007), 602–625 | MR | Zbl

[5] Sumin M. I., “Parametricheskaya dvoistvennaya regulyarizatsiya dlya zadachi optimalnogo upravleniya s potochechnymi fazovymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 49:12 (2009), 2083–2102 | MR

[6] Sumin M. I., “Parametricheskaya dvoistvennaya regulyarizatsiya v optimizatsii, optimalnom upravlenii i obratnykh zadachakh”, Vest. Tambovskogo un-ta. Estestvennye i tekhnicheskie nauki, 15:1 (2010), 467–492

[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[8] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, Dokl. AN SSSR, 165:1 (1965), 33–35 | MR | Zbl

[9] Kuzenkov O. A., Plotnikov V. I., “Suschestvovanie i edinstvennost obobschennogo resheniya lineinogo vektornogo uravneniya parabolicheskogo tipa v tretei kraevoi zadache”, Matematicheskoe modelirovanie i metody optimizatsii, Mezhvuz. tematich. sb. nauch. tr., Izd-vo GGU, Gorkii, 1989, 132–144 | MR

[10] Casas E., Raymond J.-P., Zidani H., “Pontryagins principle for local solutions of control problems with mixed control-state constraints”, SIAM J. Control Optim., 39:4 (2000), 1182–1203 | DOI | MR | Zbl

[11] Raymond J.-P., Zidani H., “Pontryagins principle for state-constrained control problems governed by parabolic equations with unbounded controls”, SIAM J. Control Optim., 36:6 (1998), 1853–1879 | DOI | MR | Zbl

[12] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[13] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[14] Casas E., “Pontryagins principle for state-constrained boundary control problems of semilinear parabolic equations”, SIAM J. Control Optim., 35:4 (1997), 1297–1327 | DOI | MR