Voir la notice du chapitre de livre
Mots-clés : bimatrix games
@article{TIMM_2011_17_1_a16,
author = {A. V. Raigorodskaya},
title = {Equilibrium behaviors of the players in an infinitely repeated $2\times2$ $\varepsilon$-best response game},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {201--216},
year = {2011},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a16/}
}
TY - JOUR AU - A. V. Raigorodskaya TI - Equilibrium behaviors of the players in an infinitely repeated $2\times2$ $\varepsilon$-best response game JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 201 EP - 216 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a16/ LA - ru ID - TIMM_2011_17_1_a16 ER -
%0 Journal Article %A A. V. Raigorodskaya %T Equilibrium behaviors of the players in an infinitely repeated $2\times2$ $\varepsilon$-best response game %J Trudy Instituta matematiki i mehaniki %D 2011 %P 201-216 %V 17 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a16/ %G ru %F TIMM_2011_17_1_a16
A. V. Raigorodskaya. Equilibrium behaviors of the players in an infinitely repeated $2\times2$ $\varepsilon$-best response game. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 201-216. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a16/
[1] Axelrod R., The evolution of cooperation, Basic Books, New York, 1984, 241 pp.
[2] Hofbauer J., Sigmund K., The theory of evolution and dynamical systems, Cambridge University Press, Cambridge, 1988, 341 pp. | MR | Zbl
[3] Weibull J., Evolutionary game theory, The M.I.T. Press, Cambridge, 1995, 287 pp. | MR
[4] Fudenberg D., Kreps D. M., “Learning mixed equilibria”, Games and Economic Behavior, 5 (1993), 320–367 | DOI | MR | Zbl
[5] Nowan M., Sigmund K., “The alternating Prisoners dilemma”, J. Theor. Biol., 168 (1994), 219–226 | DOI
[6] Van der Laan G., Tieman X., “Evolutionary game theory and the modeling of economic behavior”, De Economist, 146:1 (1998), 59–89 | DOI
[7] Kaniovski Yu. M., Kryazhimskiy A. V., Young H. P., “Learning equilibria in games played by heterogeneous populations”, Games and Economic Behavior, 31 (2000), 50–96 | DOI | MR | Zbl
[8] Kryazhimskiy A. V., Osipov Yu. S., “On evolutionary-differential games”, Proc. Steklov Math. Inst., 211, 1995, 257–287 | MR
[9] Kleimenov A. F., Kryazhimskiy A. V., “Minimum-noncooperative trajectories in repeated games”, Complex Dynamical Systems with Incomplete Information, 1, eds. E. Reithmeier, G. Leitmann, Shaker Verlag, Aachen, 1999, 94–107
[10] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985, 272 pp. | MR
[11] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl