Equilibrium behaviors of the players in an infinitely repeated $2\times2$ $\varepsilon$-best response game
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 201-216
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A stochastic infinitely repeated $\varepsilon$-best response game is analyzed, in which a $2\times2$ bimatrix game is played sequentially in an infinite number of rounds. The limits of the players' expected average gains in the first $n$ rounds of the game as $n\to\infty$ are calculated. These limits are taken as the players' expected average gains in the infinitely repeated $\varepsilon$-best response game. The players' Nash-equilibrium behaviors are described. It is shown that the players' equilibrium gains exceed their gains in the deterministic best-response game.
Keywords: repeated games, best response.
Mots-clés : bimatrix games
@article{TIMM_2011_17_1_a16,
     author = {A. V. Raigorodskaya},
     title = {Equilibrium behaviors of the players in an infinitely repeated $2\times2$ $\varepsilon$-best response game},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {201--216},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a16/}
}
TY  - JOUR
AU  - A. V. Raigorodskaya
TI  - Equilibrium behaviors of the players in an infinitely repeated $2\times2$ $\varepsilon$-best response game
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 201
EP  - 216
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a16/
LA  - ru
ID  - TIMM_2011_17_1_a16
ER  - 
%0 Journal Article
%A A. V. Raigorodskaya
%T Equilibrium behaviors of the players in an infinitely repeated $2\times2$ $\varepsilon$-best response game
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 201-216
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a16/
%G ru
%F TIMM_2011_17_1_a16
A. V. Raigorodskaya. Equilibrium behaviors of the players in an infinitely repeated $2\times2$ $\varepsilon$-best response game. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 201-216. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a16/

[1] Axelrod R., The evolution of cooperation, Basic Books, New York, 1984, 241 pp.

[2] Hofbauer J., Sigmund K., The theory of evolution and dynamical systems, Cambridge University Press, Cambridge, 1988, 341 pp. | MR | Zbl

[3] Weibull J., Evolutionary game theory, The M.I.T. Press, Cambridge, 1995, 287 pp. | MR

[4] Fudenberg D., Kreps D. M., “Learning mixed equilibria”, Games and Economic Behavior, 5 (1993), 320–367 | DOI | MR | Zbl

[5] Nowan M., Sigmund K., “The alternating Prisoners dilemma”, J. Theor. Biol., 168 (1994), 219–226 | DOI

[6] Van der Laan G., Tieman X., “Evolutionary game theory and the modeling of economic behavior”, De Economist, 146:1 (1998), 59–89 | DOI

[7] Kaniovski Yu. M., Kryazhimskiy A. V., Young H. P., “Learning equilibria in games played by heterogeneous populations”, Games and Economic Behavior, 31 (2000), 50–96 | DOI | MR | Zbl

[8] Kryazhimskiy A. V., Osipov Yu. S., “On evolutionary-differential games”, Proc. Steklov Math. Inst., 211, 1995, 257–287 | MR

[9] Kleimenov A. F., Kryazhimskiy A. V., “Minimum-noncooperative trajectories in repeated games”, Complex Dynamical Systems with Incomplete Information, 1, eds. E. Reithmeier, G. Leitmann, Shaker Verlag, Aachen, 1999, 94–107

[10] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985, 272 pp. | MR

[11] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl