Control of spectral problems for equations with discontinuous operators
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 190-200
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Optimal control problems for systems with a spectral parameter and a discontinuous operator in Banach spaces are considered. Sufficient conditions for the nonemptiness of the set of the acceptable “control–state” pairs in such problems are obtained by the variational method. Topological properties of this set are studied. Theorem on the existence of a solution in the considered optimization problem is established. The general results are applied to the optimal control problems for elliptic type distributed systems with a spectral parameter and a discontinuous nonlinearity. Propositions on the nonemptiness and the weak closedness of the set of the acceptable “control–state” pairs are proved, sufficient conditions for the existence of an optimal “control–state” pair are presented, and properties of the solution as a function of control are investigated. The issue of control in the Goldshtik problem is considered as an application.
Keywords: optimal control, spectral problems, discontinuous operator, variational method, “control–state” pair.
@article{TIMM_2011_17_1_a15,
     author = {D. K. Potapov},
     title = {Control of spectral problems for equations with discontinuous operators},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {190--200},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a15/}
}
TY  - JOUR
AU  - D. K. Potapov
TI  - Control of spectral problems for equations with discontinuous operators
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 190
EP  - 200
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a15/
LA  - ru
ID  - TIMM_2011_17_1_a15
ER  - 
%0 Journal Article
%A D. K. Potapov
%T Control of spectral problems for equations with discontinuous operators
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 190-200
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a15/
%G ru
%F TIMM_2011_17_1_a15
D. K. Potapov. Control of spectral problems for equations with discontinuous operators. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 190-200. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a15/

[1] Fursikov A. V., “O nekotorykh zadachakh upravleniya i o rezultatakh, kasayuschikhsya odnoznachnoi razreshimosti smeshannoi kraevoi zadachi dlya trekhmernykh sistem Nave–Stoksa i Eilera”, Dokl. AN SSSR, 252:5 (1980), 1066–1070 | MR | Zbl

[2] Fursikov A. V., “Zadachi upravleniya i teoremy, kasayuschiesya odnoznachnoi razreshimosti smeshannoi kraevoi zadachi dlya trekhmernykh uravnenii Nave–Stoksa i Eilera”, Mat. sb., 115(157):2(6) (1981), 281–306 | MR | Zbl

[3] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987, 368 pp. | MR

[4] Pavlenko V. N., “Metod monotonnykh operatorov v zadachakh upravleniya raspredelennymi sistemami ellipticheskogo tipa s razryvnymi nelineinostyami”, Izv. vuzov. Matematika, 1993, no. 8, 49–54 | MR | Zbl

[5] Pavlenko V. N., “Upravlenie raspredelennymi sistemami ellipticheskogo tipa s razryvnymi nelineinostyami”, Vestn. ChelGU. Ser. 3. Matematika. Mekhanika, 1999, no. 2(5), 56–67 | MR

[6] Pavlenko V. N., “Upravlenie raspredelennymi sistemami ellipticheskogo tipa s razryvnymi nelineinostyami”, Differents. uravneniya, 31:9 (1995), 1586–1587 | Zbl

[7] Pavlenko V. N., Kozhaeva L. B., “Upravlenie ellipticheskimi rezonansnymi sistemami s razryvnymi nelineinostyami”, Vestn. ChelGU. Ser. 3. Matematika. Mekhanika. Informatika, 2002, no. 1(6), 147–154 | MR | Zbl

[8] Pavlenko V. N., Potapov D. K., “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii s razryvnymi operatorami”, Sib. mat. zhurn., 42:4 (2001), 911–919 | MR | Zbl

[9] Potapov D. K., “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami v kriticheskom sluchae”, Vestn. SPbGU. Ser. 10. Prikladnaya matematika. Informatika. Protsessy upravleniya, 2004, no. 4, 125–132

[10] Potapov D. K., “Ustoichivost osnovnykh kraevykh zadach ellipticheskogo tipa so spektralnym parametrom i razryvnoi nelineinostyu v koertsitivnom sluchae”, Izv. RAEN. Matematika. Matematicheskoe modelirovanie. Informatika i upravlenie, 9:1–2 (2005), 159–165

[11] Pavlenko V. N., Potapov D. K., “Approksimatsiya kraevykh zadach ellipticheskogo tipa so spektralnym parametrom i razryvnoi nelineinostyu”, Izv. vuzov. Matematika, 2005, no. 4, 49–55 | MR | Zbl

[12] Potapov D. K., “Spectral problems for equations with discontinuous monotone operators”, J. Math. Sci., 144:4 (2007), 4232–4233 | DOI | MR | Zbl

[13] Potapov D. K., “Ob odnoi otsenke sverkhu velichiny bifurkatsionnogo parametra v zadachakh na sobstvennye znacheniya dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Differents. uravneniya, 44:5 (2008), 715–716 | MR | Zbl

[14] Potapov D. K., Zadachi so spektralnym parametrom i razryvnoi nelineinostyu, IBP, SPb., 2008, 99 pp.

[15] Goldshtik M. A., “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Dokl. AN SSSR, 147:6 (1962), 1310–1313

[16] Fraenkel L. E., Berger M. S., “A global theory of steady vortex rings in an ideal fluid”, Acta Math., 132:1 (1974), 13–51 | DOI | MR | Zbl

[17] Kuiper H. J., “On positive solutions of nonlinear elliptic eigenvalue problems”, Rend. Circ. Mat. Palermo. Ser. 2, 20:2–3 (1971), 113–138 | DOI | MR

[18] Potapov D. K., “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Izv. RAEN. Matematika. Matematicheskoe modelirovanie. Informatika i upravlenie, 8:3–4 (2004), 163–170

[19] Potapov D. K., “Nepreryvnye approksimatsii zadachi Goldshtika”, Mat. zametki, 87:2 (2010), 262–266 | MR | Zbl

[20] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR | Zbl

[21] Kryazhimskii A. V., Lovtskii K. E., “O slaboi nepreryvnosti dvizhenii po upravleniyu dlya upravlyaemykh differentsialnykh vklyuchenii i sistem s razryvnoi pravoi chastyu”, Differents. uravneniya, 22:11 (1986), 1895–1905 | MR

[22] Chang K. C., “Free boundary problems and the set-valued mappings”, J. Different. Eq., 49:1 (1983), 1–28 | DOI | MR | Zbl

[23] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1982, 336 pp. | MR

[24] Krasnoselskii M. A., Pokrovskii A. V., “Pravilnye resheniya uravnenii s razryvnymi nelineinostyami”, Dokl. AN SSSR, 226:3 (1976), 506–509 | MR

[25] Chang K. C., “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. and Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl