Voir la notice du chapitre de livre
Mots-clés : interpolation, extrapolation
@article{TIMM_2011_17_1_a14,
author = {V. G. Pimenov and A. B. Lozhnikov},
title = {Difference schemes for the numerical solution of the heat conduction equation with aftereffect},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {178--189},
year = {2011},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a14/}
}
TY - JOUR AU - V. G. Pimenov AU - A. B. Lozhnikov TI - Difference schemes for the numerical solution of the heat conduction equation with aftereffect JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 178 EP - 189 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a14/ LA - ru ID - TIMM_2011_17_1_a14 ER -
%0 Journal Article %A V. G. Pimenov %A A. B. Lozhnikov %T Difference schemes for the numerical solution of the heat conduction equation with aftereffect %J Trudy Instituta matematiki i mehaniki %D 2011 %P 178-189 %V 17 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a14/ %G ru %F TIMM_2011_17_1_a14
V. G. Pimenov; A. B. Lozhnikov. Difference schemes for the numerical solution of the heat conduction equation with aftereffect. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 178-189. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a14/
[1] Wu J., Theory and applications of partial functional differential equations, Springer-Verlag, New York, 1996, 428 pp. | MR
[2] Tavernini L., “Finite difference approximations for a class of Semilinear Volterra evolution problems”, SIAM J. Numer. Anal., 14:5 (1977), 931–949 | DOI | MR | Zbl
[3] Pimenov V. G., “Chislennye metody resheniya uravneniya teploprovodnosti s zapazdyvaniem”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 2, 113–116
[4] Pimenov V. G., Lozhnikov A. B., “Algoritmy chislennogo resheniya uravneniya teploprovodnosti s posledeistviem”, Problemy dinamicheskogo upravleniya, sb. tr. fak-ta VMiK MGU im. M. V. Lomonosova, 3, Izd. otdel fak-ta VMiK MGU, MAKS Press, M., 2007, 161–169
[5] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.
[6] Bellen A., Zennaro M., Numerical methods for delay differential equations, numerical mathematics and scientific computation, Clarendon Press, Oxford University Press, New York, 2003, 395 pp. | MR
[7] Kim A. V., Pimenov V. G., $i$-gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2004, 256 pp.
[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 656 pp. | MR
[9] Pimenov V. G., “Obschie lineinye metody chislennogo resheniya funktsionalno-differentsialnykh uravnenii”, Differents. uravneniya, 37:1 (2001), 105–114 | MR | Zbl