Difference schemes for the numerical solution of the heat conduction equation with aftereffect
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 178-189
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A family of grid methods is constructed for the numerical solution of the heat conduction equaiton of a general form with time delay; the methods are based on the idea of separating the current state and the prehistory function. A theorem is obtained on the order of convergence of the methods, which uses the technique of proving similar statements for functional differential equations and methods from the general theory of difference schemes. Results of calculating test examples with constant and variable time delay are presented.
Keywords: numerical methods, heat conduction equation, time delay, difference schemes, order of convergence.
Mots-clés : interpolation, extrapolation
@article{TIMM_2011_17_1_a14,
     author = {V. G. Pimenov and A. B. Lozhnikov},
     title = {Difference schemes for the numerical solution of the heat conduction equation with aftereffect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {178--189},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a14/}
}
TY  - JOUR
AU  - V. G. Pimenov
AU  - A. B. Lozhnikov
TI  - Difference schemes for the numerical solution of the heat conduction equation with aftereffect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 178
EP  - 189
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a14/
LA  - ru
ID  - TIMM_2011_17_1_a14
ER  - 
%0 Journal Article
%A V. G. Pimenov
%A A. B. Lozhnikov
%T Difference schemes for the numerical solution of the heat conduction equation with aftereffect
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 178-189
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a14/
%G ru
%F TIMM_2011_17_1_a14
V. G. Pimenov; A. B. Lozhnikov. Difference schemes for the numerical solution of the heat conduction equation with aftereffect. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 178-189. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a14/

[1] Wu J., Theory and applications of partial functional differential equations, Springer-Verlag, New York, 1996, 428 pp. | MR

[2] Tavernini L., “Finite difference approximations for a class of Semilinear Volterra evolution problems”, SIAM J. Numer. Anal., 14:5 (1977), 931–949 | DOI | MR | Zbl

[3] Pimenov V. G., “Chislennye metody resheniya uravneniya teploprovodnosti s zapazdyvaniem”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 2, 113–116

[4] Pimenov V. G., Lozhnikov A. B., “Algoritmy chislennogo resheniya uravneniya teploprovodnosti s posledeistviem”, Problemy dinamicheskogo upravleniya, sb. tr. fak-ta VMiK MGU im. M. V. Lomonosova, 3, Izd. otdel fak-ta VMiK MGU, MAKS Press, M., 2007, 161–169

[5] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[6] Bellen A., Zennaro M., Numerical methods for delay differential equations, numerical mathematics and scientific computation, Clarendon Press, Oxford University Press, New York, 2003, 395 pp. | MR

[7] Kim A. V., Pimenov V. G., $i$-gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2004, 256 pp.

[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 656 pp. | MR

[9] Pimenov V. G., “Obschie lineinye metody chislennogo resheniya funktsionalno-differentsialnykh uravnenii”, Differents. uravneniya, 37:1 (2001), 105–114 | MR | Zbl