The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and differential inclusions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 162-177
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to studying the space of nonempty closed convex (but not necessarily compact) sets in $\mathbb R^n$, a dynamical system of translations, and existence theorems for differential inclusions. This space is made complete by equipping it with the Hausdorff–Bebutov metric. The investigation of these issues is important for certain problems of optimal control of asymptotic characteristics of the controlled system. For example, the problem $\dot x=A(t,u)x$, $(u,x)\in\mathbb R^{m+n}$, $\lambda_n(u(\cdot))\to\min$, where $\lambda_n(u(\cdot))$ – is the maximal Lyapunov exponent of the system $\dot x=A(t,u)x$, leads to a differential inclusion with a noncompact right-hand side.
Keywords: Hausdorff–Bebutov metric, control systems, differential inclusions, dynamical system of translations.
@article{TIMM_2011_17_1_a13,
     author = {E. A. Panasenko and L. I. Rodina and E. L. Tonkov},
     title = {The space $\mathrm{clcv}(\mathbb R^n)$ with the {Hausdorff{\textendash}Bebutov} metric and differential inclusions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {162--177},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a13/}
}
TY  - JOUR
AU  - E. A. Panasenko
AU  - L. I. Rodina
AU  - E. L. Tonkov
TI  - The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and differential inclusions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 162
EP  - 177
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a13/
LA  - ru
ID  - TIMM_2011_17_1_a13
ER  - 
%0 Journal Article
%A E. A. Panasenko
%A L. I. Rodina
%A E. L. Tonkov
%T The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and differential inclusions
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 162-177
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a13/
%G ru
%F TIMM_2011_17_1_a13
E. A. Panasenko; L. I. Rodina; E. L. Tonkov. The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and differential inclusions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 162-177. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a13/

[1] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004, 511 pp.

[2] Panasenko E. A., Tonkov E. L., “Rasprostranenie teorem E. A. Barbashina i N. N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 185–201

[3] Anosov D. V., Lektsii po lineinoi algebre, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 1999, 105 pp.

[4] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985, 335 pp. | MR

[5] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., 1949, 550 pp.

[6] Anosov D. V. [i dr.], Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, Izd-vo VINITI AN SSSR, M., 1985, 244 pp. | MR

[7] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, “Faktorial”, M., 1999, 767 pp.

[8] Panasenko E. A., Tonkov E. L., “Invariantnye i ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii”, Tr. Matematicheskogo in-ta im. V. A. Steklova, 262, 2008, 202–221 | MR | Zbl

[9] Rodina L. I., Tonkov E. L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy, nebluzhdaemost i minimalnyi tsentr prityazheniya”, Nelineinaya dinamika, 5:2 (2009), 265–288

[10] Bebutov M. V., O dinamicheskikh sistemakh v prostranstve nepreryvnykh funktsii, Byullyuten mekh.-mat. fak. MGU No 5, 1941, 52 pp.

[11] Aubin J.-P., Viability theory, Birkhäuser, Boston, 1991, 543 pp. | MR | Zbl

[12] Agrachev A. F., Sachkov A. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005, 391 pp.

[13] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. Matematicheskogo in-ta im. V. A. Steklova AN SSSR, 169, 1985, 194–252 | MR | Zbl

[14] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 223 pp. | MR