Voir la notice du chapitre de livre
@article{TIMM_2011_17_1_a13,
author = {E. A. Panasenko and L. I. Rodina and E. L. Tonkov},
title = {The space $\mathrm{clcv}(\mathbb R^n)$ with the {Hausdorff{\textendash}Bebutov} metric and differential inclusions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {162--177},
year = {2011},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a13/}
}
TY - JOUR
AU - E. A. Panasenko
AU - L. I. Rodina
AU - E. L. Tonkov
TI - The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and differential inclusions
JO - Trudy Instituta matematiki i mehaniki
PY - 2011
SP - 162
EP - 177
VL - 17
IS - 1
UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a13/
LA - ru
ID - TIMM_2011_17_1_a13
ER -
%0 Journal Article
%A E. A. Panasenko
%A L. I. Rodina
%A E. L. Tonkov
%T The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and differential inclusions
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 162-177
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a13/
%G ru
%F TIMM_2011_17_1_a13
E. A. Panasenko; L. I. Rodina; E. L. Tonkov. The space $\mathrm{clcv}(\mathbb R^n)$ with the Hausdorff–Bebutov metric and differential inclusions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 162-177. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a13/
[1] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004, 511 pp.
[2] Panasenko E. A., Tonkov E. L., “Rasprostranenie teorem E. A. Barbashina i N. N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 185–201
[3] Anosov D. V., Lektsii po lineinoi algebre, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 1999, 105 pp.
[4] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985, 335 pp. | MR
[5] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., 1949, 550 pp.
[6] Anosov D. V. [i dr.], Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, Izd-vo VINITI AN SSSR, M., 1985, 244 pp. | MR
[7] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, “Faktorial”, M., 1999, 767 pp.
[8] Panasenko E. A., Tonkov E. L., “Invariantnye i ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii”, Tr. Matematicheskogo in-ta im. V. A. Steklova, 262, 2008, 202–221 | MR | Zbl
[9] Rodina L. I., Tonkov E. L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy, nebluzhdaemost i minimalnyi tsentr prityazheniya”, Nelineinaya dinamika, 5:2 (2009), 265–288
[10] Bebutov M. V., O dinamicheskikh sistemakh v prostranstve nepreryvnykh funktsii, Byullyuten mekh.-mat. fak. MGU No 5, 1941, 52 pp.
[11] Aubin J.-P., Viability theory, Birkhäuser, Boston, 1991, 543 pp. | MR | Zbl
[12] Agrachev A. F., Sachkov A. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005, 391 pp.
[13] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. Matematicheskogo in-ta im. V. A. Steklova AN SSSR, 169, 1985, 194–252 | MR | Zbl
[14] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 223 pp. | MR