Some algorithms for the dynamic reconstruction of inputs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 129-161
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For some classes of systems described by ordinary differential equations, a survey of algorithms for the dynamic reconstruction of inputs is presented. The algorithms described in the paper are stable with respect to information noises and computation errors; they are based on methods from the theory of ill-posed problems as well as on appropriate modifications of N. N. Krasovskiis principle of extremal aiming, which is known in the theory of guaranteed control.
Mots-clés : reconstruction
Keywords: controlled models.
@article{TIMM_2011_17_1_a12,
     author = {Yu. S. Osipov and A. V. Kryazhimskii and V. I. Maksimov},
     title = {Some algorithms for the dynamic reconstruction of inputs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {129--161},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a12/}
}
TY  - JOUR
AU  - Yu. S. Osipov
AU  - A. V. Kryazhimskii
AU  - V. I. Maksimov
TI  - Some algorithms for the dynamic reconstruction of inputs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 129
EP  - 161
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a12/
LA  - ru
ID  - TIMM_2011_17_1_a12
ER  - 
%0 Journal Article
%A Yu. S. Osipov
%A A. V. Kryazhimskii
%A V. I. Maksimov
%T Some algorithms for the dynamic reconstruction of inputs
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 129-161
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a12/
%G ru
%F TIMM_2011_17_1_a12
Yu. S. Osipov; A. V. Kryazhimskii; V. I. Maksimov. Some algorithms for the dynamic reconstruction of inputs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 129-161. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a12/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[3] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–68 | MR

[4] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR

[5] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp. | MR

[6] Maksimov V. I., “Dinamicheskii metod nevyazki v zadache rekonstruktsii vkhoda”, Zhurn. vychisl. matematiki i mat. fiziki, 44:2 (2004), 297–307 | MR | Zbl

[7] Martyanov A. S., “O rekonstruktsii upravlenii po izmereniyu chasti koordinat nelineinoi dinamicheskoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2004, no. 4, 52–60 | MR

[8] Blizorukova M. S., Kodess A. M., “K probleme dinamicheskogo vosstanovleniya upravleniya pri izmerenii chasti koordinat”, Differents. uravneniya, 44:11 (2008), 1450–1455 | MR | Zbl

[9] Maksimov V. I., “Ob odnom algoritme rekonstruktsii vkhodnykh vozdeistvii v lineinykh sistemakh”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 5, 11–20 | MR

[10] Maksimov V. I., “Uravneniya nepreryvnogo otsenivaniya vozmuschenii dinamicheskikh sistem”, Prikl. matematika i mekhanika, 70:5 (2006), 771–780 | MR | Zbl

[11] Osipov Yu. S., “Zadachi dinamicheskogo vosstanovleniya”, Chislo i mysl, no. 10, Znanie, M., 1987, 7–27 | MR

[12] Kryazimskii A. V., Maksimov V. I., “On rough inversion of a dynamical system with a disturbance”, J. Inv. Ill-Posed Problems, 15:6 (2008), 587–600 | MR

[13] Vanrolleghem P. A., van Daele M., “Optimal experimental design for structure characterization of biodegradation models: On-line implementation in a respirographic biosensor”, Water Science and Technology, 30:4 (1994), 243–253

[14] Stigter J. D., Vries D., Keesman K. J., “On adaptive optimal input design”, Proc. of the European Control Conference, Cambridge, U.K., 2003, Paper 066 (on CD-ROM)

[15] Keesman K. J., Maksimov V. I., “On feedback identification of unknown characteristics: a bioreactor case study”, Int. J. Control., 81:1 (2008), 134–145 | DOI | MR | Zbl

[16] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[17] Maksimov V. I., “Rekonstruktsiya vkhodov po izmereniyu chasti koordinat”, Sovremennaya matematika i ee prilozheniya. Optimalnoe upravlenie, 97, VINITI, M., 2001, 91–110