On controllable variants of the Richardson model in political science
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 121-128
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to studying the properties of optimal controls for two variants of the Richardson arms race model known in political science. The main investigation technique is Pontryagins maximum principle.
Keywords: linear systems, optimal control.
@article{TIMM_2011_17_1_a11,
     author = {M. S. Nikol'skii},
     title = {On controllable variants of the {Richardson} model in political science},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {121--128},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a11/}
}
TY  - JOUR
AU  - M. S. Nikol'skii
TI  - On controllable variants of the Richardson model in political science
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 121
EP  - 128
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a11/
LA  - ru
ID  - TIMM_2011_17_1_a11
ER  - 
%0 Journal Article
%A M. S. Nikol'skii
%T On controllable variants of the Richardson model in political science
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 121-128
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a11/
%G ru
%F TIMM_2011_17_1_a11
M. S. Nikol'skii. On controllable variants of the Richardson model in political science. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 121-128. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a11/

[1] Saati T. P., Matematicheskie modeli konfliktnykh situatsii, Sov. radio, M., 1977, 304 pp.

[2] Plotinskii Yu. M., Modeli sotsialnykh protsessov, Logos, M., 2001, 296 pp.

[3] Mangeim Dzh., Rich R. K., Politologiya: metody issledovaniya, Mir, M., 1997, 544 pp.

[4] Prasolov A. V., Matematicheskie modeli dinamiki v ekonomike, Izd-vo S.-Peterb. gos. un-ta ekonomiki i finansov, SPb., 2000, 247 pp. | MR

[5] Samarskii A. A., Mikhailov A. P., Matematicheskoe modelirovanie, Fizmatlit, M., 2005, 320 pp. | MR

[6] Richardson L. F., Arms and insecurity, Boxwood, Pittsburg, 1960, 249 pp. | MR

[7] Nikolskii M. S., “Nekotorye zadachi optimalnogo upravleniya, svyazannye s modelyu L. Richardsona gonki vooruzhenii gosudarstv”, Problemy dinamicheskogo upravleniya, Sb. tr., no. 4, Maks-Press, M., 2009, 113–123

[8] L. S. Pontryagin [i dr.], Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969, 393 pp. | Zbl

[9] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR

[10] Blagodatskikh V. I., Vvedenie v optimalnoe upravlenie, Vysshaya shkola, M., 2001, 121 pp.

[11] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966, 576 pp. | MR

[12] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[13] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997, 256 pp. | MR | Zbl

[14] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR | Zbl