On the reconstruction of the trajectory and control in a nonlinear second-order system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 17-26
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider problems of the dynamic reconstruction of unknown characteristics in a nonlinear second-order system. A dynamic variant of solving these problems is proposed. More exactly, it is assumed that the numerical solution process depends on variable (and incomplete) information on the parameters of the system. Resolving algorithms are based on the method of auxiliary models. The algorithms are stepwise; they work on finite time grids and find successive approximations to the required solution taking into account the current information on the parameters of the system.
Mots-clés : dynamic reconstruction
Keywords: method of auxiliary models.
@article{TIMM_2011_17_1_a1,
     author = {M. S. Blizorukova},
     title = {On the reconstruction of the trajectory and control in a~nonlinear second-order system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {17--26},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a1/}
}
TY  - JOUR
AU  - M. S. Blizorukova
TI  - On the reconstruction of the trajectory and control in a nonlinear second-order system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 17
EP  - 26
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a1/
LA  - ru
ID  - TIMM_2011_17_1_a1
ER  - 
%0 Journal Article
%A M. S. Blizorukova
%T On the reconstruction of the trajectory and control in a nonlinear second-order system
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 17-26
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a1/
%G ru
%F TIMM_2011_17_1_a1
M. S. Blizorukova. On the reconstruction of the trajectory and control in a nonlinear second-order system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a1/

[1] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60 | MR

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1984, 456 pp. | MR

[3] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986, 286 pp. | MR

[4] Osipov Yu. S., Kryazhimskii A. V., Inverse problems of ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR

[5] Maksimov V. I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, UrO RAN, Ekaterinburg, 2000, 305 pp.

[6] Bertuglia C. S., Lombardo S., Nijkamp P., Innovative behavior in space and time, Springer, Berlin, 1997, 431 pp.