On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. VII
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 3-16
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The proof of Hypothesis A, which was introduced in the first paper with the same title, was carried out in the previous six papers of the series and is completed in the present paper. As a consequence of this hypothesis, the following theorem is obtained: the alternating group $A_n$ for any natural $n$ has no pairs of semiproportional irreducible characters. The suggestion about the validity of this theorem was first formulated in the author's paper in 2004.
Keywords: symmetric groups, alternating groups, irreducible characters, semiproportionality.
@article{TIMM_2011_17_1_a0,
     author = {V. A. Belonogov},
     title = {On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n${.~VII}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {3--16},
     year = {2011},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a0/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. VII
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 3
EP  - 16
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a0/
LA  - ru
ID  - TIMM_2011_17_1_a0
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. VII
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 3-16
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a0/
%G ru
%F TIMM_2011_17_1_a0
V. A. Belonogov. On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. VII. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/TIMM_2011_17_1_a0/

[1] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. I”, Trudy Intituta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 143–163 | Zbl

[2] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. II”, Trudy Intituta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 58–68

[3] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. III”, Trudy Intituta matematiki i mekhaniki UrO RAN, 14, no. 4, 2008, 12–30

[4] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. IV”, Trudy Intituta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 12–33

[5] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. V”, Trudy Intituta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 13–34

[6] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. VI”, Trudy Intituta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 25–44

[7] Belonogov V. A., Predstavleniya i kharaktery v teorii konechnykh grupp, UrO AN SSSR, Sverdlovsk, 1990, 380 pp. | MR

[8] James G., Kerber A., The representation theory of the symmetric group, Addison-Wesley, London, 1981, 510 pp. | MR

[9] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982, 260 pp. | MR

[10] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$ i $A_n$”, Sib. mat. zhurn., 45:5 (2004), 977–994 | MR | Zbl

[11] Belonogov V. A., “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$”, Algebra i logika, 47:2 (2008), 135–156 | MR | Zbl

[12] Belonogov V. A., “Diagrammy Yunga bez kryukov dliny chetyre i kharaktery gruppy $S_n$”, Trudy Instituta matematiki i mekhaniki UrO RAN, 13, no. 3, 2007, 30–40

[13] Belonogov V. A., “O nekotorykh parakh neprivodimykh kharakterov grupp $S_n$ i $A_n$”, Trudy Instituta matematiki i mekhaniki UrO RAN, 13, no. 1, 2007, 11–43 | MR

[14] Belonogov V. A., “O nekotorykh parakh neprivodimykh kharakterakh grupp $S_n$”, Trudy Instituta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 13–32

[15] Belonogov V. A., “O ravnokornevykh neprivodimykh kharakterakh grupp $S_n$ i $A_n$”, Algebra i logika, 46:1 (2007), 3–25 | MR | Zbl

[16] Belonogov V. A., “O nulyakh v tablitsakh kharakterov grupp $S_n$ i $A_n$”, Algebra i logika, 44:1 (2005), 24–43 | MR | Zbl

[17] Belonogov V. A., “O nulyakh v tablitsakh kharakterov grupp $S_n$ i $A_n$. II”, Algebra i logika, 44:6 (2005), 643–663 | MR | Zbl

[18] Belonogov V. A., “O diagrammakh Yunga pary neprivodimykh kharakterov gruppy $S_n$, ravnokornevykh na $A_n$”, Sib. mat. zhurn., 49:5 (2008), 992–1006 | MR | Zbl