Observability of elastic oscillations of the network with distributed and concentrated parameters on free boundaries
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 76-81
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In paper the solution of a observability problem (restoration is received initial condition) behind oscillations of a network with distributed and concentrated parameters, in case of when observability is conducted on free boundaries of a network.
Keywords: wave equation, controllability, observability, system with distributed and concentrated parameters.
@article{TIMM_2010_16_5_a9,
     author = {A. I. Egorov and L. N. Znamenskaya},
     title = {Observability of elastic oscillations of the network with distributed and concentrated parameters on free boundaries},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {76--81},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a9/}
}
TY  - JOUR
AU  - A. I. Egorov
AU  - L. N. Znamenskaya
TI  - Observability of elastic oscillations of the network with distributed and concentrated parameters on free boundaries
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 76
EP  - 81
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a9/
LA  - ru
ID  - TIMM_2010_16_5_a9
ER  - 
%0 Journal Article
%A A. I. Egorov
%A L. N. Znamenskaya
%T Observability of elastic oscillations of the network with distributed and concentrated parameters on free boundaries
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 76-81
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a9/
%G ru
%F TIMM_2010_16_5_a9
A. I. Egorov; L. N. Znamenskaya. Observability of elastic oscillations of the network with distributed and concentrated parameters on free boundaries. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 76-81. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a9/

[1] Egorov A. I., Znamenskaya L. N., “O granichnoi nablyudaemosti uprugikh kolebanii svyazannykh ob'ektov s raspredelennymi i sosredotochennymi parametrami”, Avtomatika i telemekhanika, 2007, no. 2, 95–102 | MR | Zbl

[2] Znamenskaya L. N., “Nablyudaemost uprugikh kolebanii sistem s raspredelennymi i sosredotochennymi parametrami po dvum granitsam”, Zhurn. vych. matem. i matem. fiziki, 47:6 (2007), 944–958

[3] Egorov A. I., Znamenskaya L. N., “Nablyudaemost po sostoyaniyu uprugikh kolebanii sistem s raspredelennymi i sosredotochennymi parametrami”, Zhurn. vych. matem. i matem. fiziki, 49:10 (2009), 1779–1784

[4] Egorov A. I., Znamenskaya L. N., “Nablyudaemost uprugikh kolebanii po granitse seti s raspredelennymi i sosredotochennymi parametrami”, Izv. Irkut. gos. un-ta. Ser. “Matematika”, 2:1 (2009), 197–206

[5] Egorov A. I., Znamenskaya L. N., “Ob upravlyaemosti kolebanii seti iz svyazannykh ob'ektov s raspredelennymi i sosredotochennymi parametrami”, Zhurn. vych. matem. i matem. fiziki, 49:5 (2009), 815–825 | MR | Zbl