Voir la notice du chapitre de livre
@article{TIMM_2010_16_5_a8,
author = {V. A. Dykhta},
title = {Analysis of sufficient optimality conditions with a~set of {Lyapunov} type functions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {66--75},
year = {2010},
volume = {16},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a8/}
}
V. A. Dykhta. Analysis of sufficient optimality conditions with a set of Lyapunov type functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 66-75. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a8/
[1] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR | Zbl
[2] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1974, 488 pp. | MR
[3] Krotov V. F., Gurman V. I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973, 448 pp. | MR | Zbl
[4] Clarke F. H. et al. (eds.), Nonsmooth Analysis and Control Theory, Grad. Texts in Math., 178, Springer-Verlag, N.Y., 1998, 276 pp. | MR | Zbl
[5] Krotov V. F., Global Methods in Optimal Control Theory, Monographs and Textbooks in Pure and Applied Mathematics, 195, Marcel Dekker, N.Y., 1996, 384 pp. | MR | Zbl
[6] Bardi M., Capuzzo-Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhauser, Boston, 1997, 570 pp. | MR | Zbl
[7] Dykhta V. A., “Nekotorye prilozheniya neravenstv Gamiltona–Yakobi v optimalnom upravlenii”, Izv. IGU (Matematika), 2 (2009), 15–28
[8] Milyutin A. A., “Calculus of variations and optimal control”, Proc. Internat. Conf. on the Calculus of Variations and Related Topics (Haifa,), Chapman and Hall/CRC Research Notes in Mathematics Series, 411, 2000, 159–172 | MR | Zbl
[9] Milyutin A. A., Osmolovskii N. P., Calculus of Variations and Optimal Control, Amer. Math. Soc., Providence, Rhode Island, 1998, 372 pp. | MR | Zbl
[10] Dykhta V. A., “Printsip rasshireniya v kachestvennoi teorii upravleniya”, Metody resheniya zadach teorii upravleniya na osnove printsipa rasshireniya, eds. V. I. Gurman, G. N. Konstantinov, Nauka, Novosibirsk, 1990, 190 pp. | MR | Zbl
[11] Dykhta V. A., “Neravenstvo Lyapunova–Krotova i dostatochnye usloviya v optimalnom upravlenii”, Itogi nauki i tekhniki. Sovr. matematika i ee prilozheniya, 110, 2006, 76–108 | MR | Zbl
[12] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, In-t komp. issledovanii, M.–Izhevsk, 2003, 336 pp.
[13] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 216 pp. | MR | Zbl
[14] Vinter R. B., Optimal Control, Birkhäuser, Boston, 2000, 504 pp. | MR | Zbl
[15] Clarke F. H., Nour C., “Nonconvex duality in optimal control”, SIAM J. Control Optim., 43 (2005), 2036–2048 | DOI | MR | Zbl
[16] Vinter R. B., “Convex duality and nonlinear optimal control”, SIAM J. Control Optim., 31 (1993), 518–538 | DOI | MR | Zbl
[17] Bacciotti A., Rosier L., Lyapunov functions and stability in control theory, Springer-Verlag, Berlin–Heidelberg, 2005, 235 pp. | MR | Zbl
[18] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001, 384 pp.
[19] Gurman V. I., Printsip rasshireniya v zadachakh upravleniya, 2-e izd., pererab. i dop., Nauka, Fizmatlit, M., 1997, 288 pp. | MR | Zbl
[20] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vuzov. Matematika, 2009, no. 1, 3–43 | MR | Zbl
[21] Khrustalev M. M., “Tochnoe opisanie mnozhestv dostizhimosti i uslovie globalnoi optimalnosti dinamicheskikh sistem. I. Otsenki i tochnoe opisanie mnozhestv dostizhimosti i upravlyaemosti”, Avtomatika i telemekhanika, 1988, no. 5, 62–71 | MR
[22] Khrustalev M. M., “Tochnoe opisanie mnozhestv dostizhimosti i uslovie globalnoi optimalnosti dinamicheskikh sistem. II. Usloviya globalnoi optimalnosti”, Avtomatika i telemekhanika, 1988, no. 7, 70–80 | MR
[23] Dmitruk A. V., “Quadratic order conditions of a local minimum for singular extremals in a general optimal control problem”, Proc. of Symp. Pure Math. Differential Geometry and Control, 64, eds. G. Fereira et al., Amer. Math. Soc., 1998, 163–198 | MR
[24] Ekeland I., “Nonconvex minimization problems”, Bull. Amer. Math. Soc., 1:3 (1979), 443–474 | DOI | MR | Zbl
[25] Subbotina N. N., “Printsip maksimuma i subdifferentsial funktsii tseny”, Problemy upravleniya i teorii informatsii, 18:3 (1989), 151–160 | MR | Zbl
[26] Subbotina N. N., “Metod dinamicheskogo programmirovaniya dlya klassa lokalno-lipshitsevykh funktsii”, Dokl. RAN, 389:2 (2003), 169–172 | Zbl
[27] Mordukhovich B. S., Variational Analysis and Generalized Differentiation I, Fundamental Principles of Mathematical Sciences, 330, Springer, Berlin, 2006, 611 pp. ; II, Fundamental Principles of Mathematical Sciences, 331, 580 pp. | MR | Zbl | MR
[28] Borschevskii M. Z., “Zadacha dinamicheskogo ispolzovaniya istoschaemogo resursa”, Voprosy prikladnoi matematiki, SEI SO AN SSSR, Irkutsk, 1977, 120–131