Liapunov–Krasovskii quadratic functionals for linear autonomous systems with aftereffect
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 48-56
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper the converse problem of asymptotic stability theorem for linear autonomous systems with aftereffect are examined. Analytic representations Liapunov–Krasovskii quadratic bounded positive functionals in Hilbert space are investigated.
Keywords: differential equations with aftereffect, stability, quadratic functionals.
@article{TIMM_2010_16_5_a6,
     author = {Yu. F. Dolgii},
     title = {Liapunov{\textendash}Krasovskii quadratic functionals for linear autonomous systems with aftereffect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {48--56},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a6/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
TI  - Liapunov–Krasovskii quadratic functionals for linear autonomous systems with aftereffect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 48
EP  - 56
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a6/
LA  - ru
ID  - TIMM_2010_16_5_a6
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%T Liapunov–Krasovskii quadratic functionals for linear autonomous systems with aftereffect
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 48-56
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a6/
%G ru
%F TIMM_2010_16_5_a6
Yu. F. Dolgii. Liapunov–Krasovskii quadratic functionals for linear autonomous systems with aftereffect. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 48-56. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a6/

[1] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp. | MR

[2] Tsarkov E. F., Engelson L. E., “O statisticheskikh resheniyakh lineinykh sistem differentsialno-funktsionalnykh uravnenii”, Topologicheskie prostranstva i ikh otobrazheniya, LGU, Riga, 1983, 117–136 | MR

[3] Kolmanovskii V. B., Nosov V. R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981, 448 pp. | MR

[4] Repin Yu. M., “Kvadratichnye funktsionaly Lyapunova dlya sistem s zapazdyvaniem”, Prikl. matem. i mekhan., 29:3 (1965), 564–566 | MR | Zbl

[5] Markushin E. M., “O vychislenii kvadratichnykh funktsionalov dlya sistem s zapazdyvaniem vremeni”, Dif. uravneniya, 7:2 (1971), 369–370 | Zbl

[6] Kim A. V., $i$-Gladkii analiz i funktsionalno-differentsialnye uravneniya, UrO RAN, Ekaterinburg, 1996, 234 pp.

[7] Infante E. F., Castelan W. B., “A Lyapunov functional for a matrix difference-differential equation”, J. Different. Equat., 29:3 (1978), 439–451 | DOI | MR | Zbl

[8] Dolgii Yu. F., “Vychislenie kvadratichnykh funktsionalov Lyapunova dlya sistem differentsialnykh uravnenii s zapazdyvaniem”, Tez. dokl. Vsesoyuznoi konferentsii “Upravlenie v mekhanicheskikh sistemakh”, Sverdlovsk, 1990, 37–38

[9] Milshtein G. N., “Strogo polozhitelnye funktsionaly Lyapunova dlya lineinykh sistem s posledeistviem”, Dif. uravneniya, 23:12 (1987), 2051–2060 | MR

[10] Knyazhische L. B., “Funktsionaly Lyapunova so znakopostoyannoi proizvodnoi dlya stabilizatsii sistem s zapazdyvaniem”, Dif. uravneniya, 45:5 (2009), 689–697 | MR

[11] Andreev A. S., “Metod funktsionalov Lyapunova v zadache ustoichivosti funktsionalno-differentsialnykh uravnenii”, Avtomatika i telemekhanika, 2009, no. 9, 4–55 | Zbl

[12] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR

[13] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966, 544 pp. | MR | Zbl

[14] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 896 pp.