On direct methods for solving variational problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 36-47
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, new “direct” methods for solving problems of Calculus of Variations are described. The methods suggested are based on reduction (by means of exact penalty functions) of the initial constrained minimization problem to an unconstrained minimization one. The constraints may be of different nature (boundary conditions, differential or integral relations etc.). A comparison with Ritz' and Galerkin's methods is given. The proposed approach can be useful for practical solution of constrained problems in Control Theory and Calculus of Variations.
Mots-clés : calculus of variations
Keywords: exact penalties, nonsmooth analysis, subdifferential, method of hypo-differential descent.
@article{TIMM_2010_16_5_a5,
     author = {V. F. Demyanov and G. Sh. Tamasyan},
     title = {On direct methods for solving variational problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {36--47},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a5/}
}
TY  - JOUR
AU  - V. F. Demyanov
AU  - G. Sh. Tamasyan
TI  - On direct methods for solving variational problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 36
EP  - 47
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a5/
LA  - ru
ID  - TIMM_2010_16_5_a5
ER  - 
%0 Journal Article
%A V. F. Demyanov
%A G. Sh. Tamasyan
%T On direct methods for solving variational problems
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 36-47
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a5/
%G ru
%F TIMM_2010_16_5_a5
V. F. Demyanov; G. Sh. Tamasyan. On direct methods for solving variational problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 36-47. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a5/

[1] Demyanov V. F., Usloviya ekstremuma i variatsionnye zadachi, Vyssh. shk., M., 2005, 335 pp.

[2] Eremin I. I., “Metod “shtrafov” v vypuklom programmirovanii”, Dokl. AN SSSR, 143:4 (1967), 748–751 | MR

[3] Gelfand I. M., Fomin S. V., Variatsionnoe ischislenie, Fizmatgiz, M., 1961, 228 pp. | MR

[4] Elsgolts L. E., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969, 424 pp. | MR

[5] Alekseev V. M., Galeev E. M., Tikhomirov V. M., Sbornik zadach po optimizatsii. Teoriya. Primery. Zadachi, Nauka, M., 1984, 288 pp. | MR

[6] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, M., 1962, 708 pp. | MR

[7] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, M., 1966, 432 pp. | MR