Modeling osmotic de- and rehydration of living cells using Hamilton–Jacobi eqytions and reachable set techniques
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 308-315
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper describes mathematical models of the osmotic shrinkage and swelling of living cells during freezing and thawing. The cell shape is searched as the level set of a function which satisfies a Hamilton–Jacobi equation resulting from a Stefan-type condition for the normal velocity of the cell boundary. The Hamilton–Jacobi equation is then solved numerically in two and three dimensions using a monotony preserving finite-difference scheme. A generalized variant of the Stefan condition accounting for tension effects in the cell membrane is also considered, and the corresponding cell shape evolution is computed in two dimensions using a reachable set technique arising from conflict control approach.
Keywords: сryopreservation of cells, osmotic effect, mathematical model, Hamilton–Jacobi equations, finite-difference scheme, reachable set.
@article{TIMM_2010_16_5_a34,
     author = {V. L. Turova},
     title = {Modeling osmotic de- and rehydration of living cells using {Hamilton{\textendash}Jacobi} eqytions and reachable set techniques},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {308--315},
     year = {2010},
     volume = {16},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a34/}
}
TY  - JOUR
AU  - V. L. Turova
TI  - Modeling osmotic de- and rehydration of living cells using Hamilton–Jacobi eqytions and reachable set techniques
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 308
EP  - 315
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a34/
LA  - en
ID  - TIMM_2010_16_5_a34
ER  - 
%0 Journal Article
%A V. L. Turova
%T Modeling osmotic de- and rehydration of living cells using Hamilton–Jacobi eqytions and reachable set techniques
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 308-315
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a34/
%G en
%F TIMM_2010_16_5_a34
V. L. Turova. Modeling osmotic de- and rehydration of living cells using Hamilton–Jacobi eqytions and reachable set techniques. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 308-315. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a34/

[1] Batycky R. P., Hammerstedt R., Edwards D. A., “Osmotically driven intracellular transport phenomena”, Phil. Trans. R. Soc. Lond. A, 355 (1997), 2459–2488 | DOI | Zbl

[2] Caginalp G., “An analysis of a phase field model of a free boundary”, Arch. Rat. Mech. Anal., 92 (1986), 205–245 | DOI | MR | Zbl

[3] Chen S. C., Mrksich M., Huang S., Whitesides G. M., Ingber D. E., “Geometric control of cell life and death”, Science, 276 (1997), 1425–1428 | DOI

[4] Fremond M., Non-Smooth Thermomechanics, Springer, Berlin, 2002, 480 pp. | MR | Zbl

[5] Malafeyev O. A., Troeva M. S., “A weak solution of Hamilton–Jacobi equation for a differential two-person zero-sum game”, Preprints of the Eighth International Symposium on Differential Games and Applications (Maastricht, Netherlands, July 5–7, 1998), 366–369

[6] Mao L., Udaykumar H. S., Karlsson J. O. M., “Simulation of micro scale interaction betweenice and biological cells”, Int. J. of Heat and Mass Transfer, 46 (2003), 5123–5136 | DOI | Zbl

[7] Krasovskii N. N, Subbotin A. I., Positional Differential Games, Nauka, Moscow, 1974 (in Russian) | MR | Zbl

[8] Krasovskii N. N, Subbotin A. I., Game-Theoretical Control Problems, Springer-Verlag, New York–Berlin–Heidelberg, 1988, 517 pp. | MR | Zbl

[9] Patsko V. S., Turova V. L., “From Dubins' car to Reeds and Shepp's mobile robot”, Comput. Visual. Sci., 13:7 (2009), 345–364 | DOI | MR

[10] Souganidis P. E., “Approximation schemes for viscosity solutions of Hamilton–Jacobi equations”, J. of Diff. Eq., 59 (1985), 1–43 | DOI | MR | Zbl

[11] Subbotin A. I., Generalized Solutions of First Order PDEs, Birkhäuser, Boston, 1995, 312 pp. | MR