About one problem of optimal control with nonlinear functional
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 22-29
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The algorithm of the solution of optimal control problem with functional, integral part of it depend on power function of control and contain discount parameter and terminal part of it depend on time of termination of process, in a class of program controls with restrictions is suggest. The results of calculations of optimal control for test parameters of models is reduce.
Keywords: optimal control, Pontriagin's maximum principle, mathematical modelling of wildlife control.
@article{TIMM_2010_16_5_a3,
     author = {N. L. Grigorenko and D. V. Kamzolkin and L. N. Lukyanova and D. G. Pivovarchuk},
     title = {About one problem of optimal control with nonlinear functional},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {22--29},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a3/}
}
TY  - JOUR
AU  - N. L. Grigorenko
AU  - D. V. Kamzolkin
AU  - L. N. Lukyanova
AU  - D. G. Pivovarchuk
TI  - About one problem of optimal control with nonlinear functional
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 22
EP  - 29
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a3/
LA  - ru
ID  - TIMM_2010_16_5_a3
ER  - 
%0 Journal Article
%A N. L. Grigorenko
%A D. V. Kamzolkin
%A L. N. Lukyanova
%A D. G. Pivovarchuk
%T About one problem of optimal control with nonlinear functional
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 22-29
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a3/
%G ru
%F TIMM_2010_16_5_a3
N. L. Grigorenko; D. V. Kamzolkin; L. N. Lukyanova; D. G. Pivovarchuk. About one problem of optimal control with nonlinear functional. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 22-29. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a3/

[1] Pontryagin L. S, Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961, 391 pp. | MR | Zbl

[2] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002, 820 pp.

[3] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 574 pp. | MR

[4] Grigorenko N. L. Kamzolkin D. V. Lukyanova L. N., “Reshenie odnoi zadachi optimalnogo upravleniya. Problemy dinamicheskogo upravleniya”, Sb. nauch. tr. fakulteta VMK MGU im. Lomonosova, 1, MAKS Press, M., 2005, 137–144 | MR

[5] Grigorenko N. L. Kamzolkin D. V. Lukyanova L. N. Pivovarchuk D. G., “O zadache optimalnogo upravleniya s integralnym funktsionalom ot ratsionalnoi funktsii upravleniya”, Dif. uravneniya, 45:11 (2009), 1586–1600 | MR | Zbl

[6] Avvakumov S. N. Kiselev Yu. N. Orlov M. V., “Issledovanie odnomernoi optimizatsionnoi modeli MDI. Beskonechnyi gorizont. Konechnyi gorizont. Problemy dinamicheskogo upravleniya”, v. 1, Sb. nauch. tr. fakulteta VMK MGU im. Lomonosova, MAKS Press, M., 2005, 111–136 | MR

[7] Kiselev Yu. N. Avvakumov S. N. Orlov M. V., “Zakon giperbolicheskogo tangensa pri sintezirovanii optimalnogo upravleniya v odnoi nelineinoi modeli s diskontirovaniem”, Dif. uravneniya, 42:11 (2006), 1490–1506 | MR | Zbl