On the computation of the effective Hamitonian in the non convex case
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 253-260
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we propose a method to compute the effective Hamiltonian, a classical problem arising e.g. in
weak KAM theory and homogenization. We will focus our attention on the case of non convex Hamiltonians
related to differential games where the effective Hamiltonian gives information regarding the ergodicity of the
game. The method is based on solution of the Hamilton–Jacobi–Isaacs equation and gives an approximation
of the effective Hamiltonian via a coupling between a dynamic programming scheme for pursuit-evasion games and the techniques adapted to solve the cell problem in the convex case. Some tests will be presented in the last section.
Keywords:
Hamilton–Jacobi equations, nonconvex Hamiltonian, homogenization, cell problem, numerical approximation.
@article{TIMM_2010_16_5_a28,
author = {M. Falcone and M. Rorro},
title = {On the computation of the effective {Hamitonian} in the non convex case},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {253--260},
publisher = {mathdoc},
volume = {16},
number = {5},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a28/}
}
TY - JOUR AU - M. Falcone AU - M. Rorro TI - On the computation of the effective Hamitonian in the non convex case JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 253 EP - 260 VL - 16 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a28/ LA - en ID - TIMM_2010_16_5_a28 ER -
M. Falcone; M. Rorro. On the computation of the effective Hamitonian in the non convex case. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 253-260. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a28/