Voir la notice du chapitre de livre
@article{TIMM_2010_16_5_a28,
author = {M. Falcone and M. Rorro},
title = {On the computation of the effective {Hamitonian} in the non convex case},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {253--260},
year = {2010},
volume = {16},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a28/}
}
M. Falcone; M. Rorro. On the computation of the effective Hamitonian in the non convex case. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 253-260. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a28/
[1] Achdou Y., Camilli F., Capuzzo Dolcetta I., “Homogenization of Hamilton–Jacobi equations: numerical methods”, Mathematical Models and Methods Applied Sciences, 18 (2008), 1115–1143 | DOI | MR | Zbl
[2] Alvarez O., Bardi M., “Ergodic problems in differential games”, Advances in dynamic game theory, Ann. Internat. Soc. Dynam. Games, 9, Birkhäuser, Boston, 2007, 131–152 | MR | Zbl
[3] Bardi M., “On differential games with long-time-average cost”, Advances in dynamic games and their applications, Ann. Internat. Soc. Dynam. Games, 10, Birkhäuser, Boston, 2009, 3–18 | MR | Zbl
[4] Evans L. C., “Periodic homogenisation of certain fully nonlinear partial differential equations”, Proc. Roy. Soc. Edinburgh Sect. A, 120:3–4 (1992), 245–265 | MR | Zbl
[5] Evans L. C., Gomes D., “Effective Hamiltonians and Averaging for Hamiltonian Dynamics”, Archive for Rational Mechanics and Analysis, 157 (2001), 1–33 | DOI | MR | Zbl
[6] Falcone M., “Numerical Methods for Differential Games via PDEs”, International Game Theory Review, 8:2 (2006), 231–272 | DOI | MR | Zbl
[7] Falcone M., Lanucara P., Rorro M., HJPACK Version 1.9 Users Guide, , 2006 http://www.caspur.it/hjpack/user_guide1.9.pdf
[8] Falcone M., Rorro M., “On a variational approximation of the effective Hamiltonian”, Numerical Mathematics and Advanced Applications, Proceedings of ENUMATH 2007 (Graz, Austria, September 10–14, 2007), eds. K. Kunisch, G. Of, O. Steinbach, Springer, Berlin–Heidelberg, 2008, 719–726 | Zbl
[9] Falcone M., Rorro M., Some approximation methods for the effective Hamiltonian and the Aubry set, preprint, 2009, submitted
[10] Gomes D., Oberman A., “Computing the effective Hamiltonian using a variational approach”, SIAM J. Control Optim., 43 (2004), 792–812 | DOI | MR | Zbl
[11] Kokotovich P. V., Khalil H. K., O'Reilly J., Singular perturbation methods in control: analysis and design, Academic Press, London, 1986 | MR
[12] Lions P. L., Papanicolau P., Varadhan S., Homogenization of Hamilton–Jacobi equations, Unpublished preprint, 1986
[13] Qian J., Two approximations for effective Hamiltonians arising from homogenization of Hamilton–Jacobi equations, preprint, UCLA, Math Dept., 2003
[14] Rorro M., “An approximation scheme for the effective Hamiltonian and applications”, Appl. Numer. Math., 56 (2006), 1238–1254 | DOI | MR | Zbl
[15] Soravia P., “Estimates of convergence of fully discrete schemes for the Isaacs equation of pursuit-evasion games via maximum principle”, SIAM J. Control Optim., 36:1 (1988), 1–11 | DOI | MR
[16] Subbotina N. N., “Asymptotic properties of minimax solutions of Isaacs–Bellman equations in differential games with fast and slow motions”, J. Appl. Math. Mech., 60 (1996), 883–890 | DOI | MR | Zbl
[17] Subbotina N. N., “Asymptotics for singularly perturbed differential games”, Game theory and Applications, 7, Nva Sci. Publ., Huntington, NY, 2001, 175–196 | MR