Six integral equations and a flexible Liapunov functional
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 241-252
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we study several integral equations including linear, nonlinear, and resolvent equations, by means of a flexible Liapunov functional. The goal is to obtain qualitative properties involving limit sets of solutions. The Liapunov functional is first applied directly to the integral equations without first differentiating the integral equation. In addition we develop a strategy for converting an integral equation into a strongly stable differential equation which maintains most of the properties of the kernel and then we apply that flexible Liapunov functional to it. None of this is applied to singular kernels, but work is in progress to apply the Liapunov functional to equations having singular kernels.
Keywords: Liapunov functionals, integral equations, boundedness, periodicity.
@article{TIMM_2010_16_5_a27,
     author = {T. A. Burton},
     title = {Six integral equations and a~flexible {Liapunov} functional},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {241--252},
     year = {2010},
     volume = {16},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a27/}
}
TY  - JOUR
AU  - T. A. Burton
TI  - Six integral equations and a flexible Liapunov functional
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 241
EP  - 252
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a27/
LA  - en
ID  - TIMM_2010_16_5_a27
ER  - 
%0 Journal Article
%A T. A. Burton
%T Six integral equations and a flexible Liapunov functional
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 241-252
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a27/
%G en
%F TIMM_2010_16_5_a27
T. A. Burton. Six integral equations and a flexible Liapunov functional. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 241-252. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a27/

[1] Burton T. A., Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Dover, New York, 2005, 342 pp.

[2] Burton T. A., “Examples of Lyapunov functionals for non-differentiated equations”, Proc. First World Congress of Nonlinear Analysts, ed. V. Lakshmikantham, Walter de Gruyter, 1992, 1203–1214 | MR

[3] Burton T. A., “Boundedness and periodicity in integral and integro-differential equations”, Diff. Eq. Dynamical Systems, 1 (1993), 161–172 | MR | Zbl

[4] Burton T. A., “Scalar nonlinear integral equations”, Tatra Mt. Math. Publ., 38, 2007, 41–56 | MR | Zbl

[5] Burton T. A., Liapunov Functionals for Integral Equations, Trafford, Victoria, B.C., Canada, 2008, 361 pp. http://www.trafford.com/08-1365

[6] Burton T. A., “Liapunov Functionals, convex kernels, and strategy”, Nonlinear Dynamics and Systems Theory (Kiev) (to appear)

[7] Burton T. A., “A Liapunov functional for a linear integral equation”, Electronic J. Qualitative Theory Differential Equations, 10 (2010), 1–10 | MR

[8] Burton T. A., Dwiggins D. P., “Resolvents, integral equations, and limit sets”, Mathematica Bohemica (to appear)

[9] Burton T. A., Makay G., “Continuity, compactness, fixed points, and integral equations”, Electronic J. Qualitative Theory Differential Equations, 14 (2002), 1–14 | MR

[10] Gripenberg G., Londen S. O., Staffans O., Volterra Integral and Functional Equations, Cambridge Univ. Press, Cambridge, 1990, 701 pp. | MR | Zbl

[11] Krasovskii N. N., Stability of Motion, Stanford Univ. Press, Stanford, 1963, 188 pp. | MR | Zbl

[12] Levin J. J., “The asymptotic behavior of the solution of a Volterra equation”, Proc. Amer. Math. Soc., 14 (1963), 534–541 | DOI | MR | Zbl

[13] Levin J. J., “The qualitative behavior of a nonlinear Volterra equation”, Proc. Amer. Math. Soc., 16 (1965), 711–718 | DOI | MR | Zbl

[14] Londen S. O., “On the solutions of a nonlinear Volterra equation”, J. Math. Anal. Appl., 39 (1972), 564–573 | DOI | MR | Zbl

[15] Miller R. K., Nonlinear Volterra Integral Equations, Benjamin, Menlo Park, Calif., 1971, 468 pp. | MR | Zbl

[16] Volterra V., “Sur la téhorie mathématique des phénomés héréditaires”, J. Math. Pur. Appl., 7 (1928), 249–298 | Zbl

[17] Zhang Bo., “Boundedness and global attractivity of solutions for a system of nonlinear integral equations”, Cubo: A Mathematical Journal, 11 (2009), 41–53 | MR | Zbl