Voir la notice du chapitre de livre
@article{TIMM_2010_16_5_a27,
author = {T. A. Burton},
title = {Six integral equations and a~flexible {Liapunov} functional},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {241--252},
year = {2010},
volume = {16},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a27/}
}
T. A. Burton. Six integral equations and a flexible Liapunov functional. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 241-252. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a27/
[1] Burton T. A., Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Dover, New York, 2005, 342 pp.
[2] Burton T. A., “Examples of Lyapunov functionals for non-differentiated equations”, Proc. First World Congress of Nonlinear Analysts, ed. V. Lakshmikantham, Walter de Gruyter, 1992, 1203–1214 | MR
[3] Burton T. A., “Boundedness and periodicity in integral and integro-differential equations”, Diff. Eq. Dynamical Systems, 1 (1993), 161–172 | MR | Zbl
[4] Burton T. A., “Scalar nonlinear integral equations”, Tatra Mt. Math. Publ., 38, 2007, 41–56 | MR | Zbl
[5] Burton T. A., Liapunov Functionals for Integral Equations, Trafford, Victoria, B.C., Canada, 2008, 361 pp. http://www.trafford.com/08-1365
[6] Burton T. A., “Liapunov Functionals, convex kernels, and strategy”, Nonlinear Dynamics and Systems Theory (Kiev) (to appear)
[7] Burton T. A., “A Liapunov functional for a linear integral equation”, Electronic J. Qualitative Theory Differential Equations, 10 (2010), 1–10 | MR
[8] Burton T. A., Dwiggins D. P., “Resolvents, integral equations, and limit sets”, Mathematica Bohemica (to appear)
[9] Burton T. A., Makay G., “Continuity, compactness, fixed points, and integral equations”, Electronic J. Qualitative Theory Differential Equations, 14 (2002), 1–14 | MR
[10] Gripenberg G., Londen S. O., Staffans O., Volterra Integral and Functional Equations, Cambridge Univ. Press, Cambridge, 1990, 701 pp. | MR | Zbl
[11] Krasovskii N. N., Stability of Motion, Stanford Univ. Press, Stanford, 1963, 188 pp. | MR | Zbl
[12] Levin J. J., “The asymptotic behavior of the solution of a Volterra equation”, Proc. Amer. Math. Soc., 14 (1963), 534–541 | DOI | MR | Zbl
[13] Levin J. J., “The qualitative behavior of a nonlinear Volterra equation”, Proc. Amer. Math. Soc., 16 (1965), 711–718 | DOI | MR | Zbl
[14] Londen S. O., “On the solutions of a nonlinear Volterra equation”, J. Math. Anal. Appl., 39 (1972), 564–573 | DOI | MR | Zbl
[15] Miller R. K., Nonlinear Volterra Integral Equations, Benjamin, Menlo Park, Calif., 1971, 468 pp. | MR | Zbl
[16] Volterra V., “Sur la téhorie mathématique des phénomés héréditaires”, J. Math. Pur. Appl., 7 (1928), 249–298 | Zbl
[17] Zhang Bo., “Boundedness and global attractivity of solutions for a system of nonlinear integral equations”, Cubo: A Mathematical Journal, 11 (2009), 41–53 | MR | Zbl