Voir la notice du chapitre de livre
@article{TIMM_2010_16_5_a26,
author = {N. D. Botkin and K.-H. Hoffmann},
title = {Control design in cryopreservation of living cells},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {233--240},
year = {2010},
volume = {16},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a26/}
}
N. D. Botkin; K.-H. Hoffmann. Control design in cryopreservation of living cells. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 233-240. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a26/
[1] Botkin N. D., “Approximation schemes for finding the value functions for differential games with nonterminal payoff functional”, Analysis, 14:2 (1994), 203–220 | MR | Zbl
[2] Botkin N. D., Hoffmann K-H., Turova V.Ł., Stable Solutions of Hamilton–Jacobi Equations. Application to Control of Freezing Processes, German Research Society (DFG) Priority Program 1253: Optimization with Partial Differential Equations. Preprint-Nr. SPP1253-080, 2009 http://www.am.uni-erlangen.de/home/spp1253/wiki/images/7/7d/Preprint-SPP1253-080.pdf
[3] Caginalp G., “An analysis of a phase field model of a free boundary”, Arch. Rat. Mech. Anal., 92 (1986), 205–245 | DOI | MR | Zbl
[4] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–47 | DOI | MR
[5] Crandall M. G., Lions P. L., “Two approximations of solutions of Hamilton–Jacobi equations”, Math. Comp., 43 (1984), 1–19 | DOI | MR | Zbl
[6] Fremond M., Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002, 490 pp. | MR | Zbl
[7] Hoffmann K.-H., Jiang Lishang, “Optimal control of a phase field model for solidification”, Numer. Funct. Anal. Optimiz., 13:1–2 (1992), 11–27 | DOI | MR | Zbl
[8] Isaacs R., Differential Games, John Wiley, New York, 1965, 408 pp. | MR | Zbl
[9] Krasovskii N. N., Control of a Dynamic System, Nauka, Moscow, 1985, 520 pp. (in Russian) | MR
[10] Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer, New York, 1988, 518 pp. | MR | Zbl
[11] Malafeyev O. A., Troeva M. S., “A weak solution of Hamilton–Jacobi equation for a differential twoperson zero-sum game”, Preprints of the Eight Int. Symp. on Differential Games and Applications (Maastricht, Netherland, July 5–7, 1998), 366–369
[12] Souganidis P. E., “Approximation schemes for viscosity solutions of Hamilton–Jacobi equations”, J. Differ. Equ., 59 (1985), 1–43 | DOI | MR | Zbl
[13] Subbotin A. I., Chentsov A. G., Optimization of Guaranteed Result in Control Problems, Nauka, Moscow, 1981, 287 pp. (in Russian) | MR | Zbl
[14] Subbotin A. I., Generalized Solutions of First Order PDEs, Birkhäuser, Boston, 1995, 312 pp. | MR