Control design in cryopreservation of living cells
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 233-240
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A mathematical model of ice formation in living cells during freezing is considered. Application of an appropriate averaging technique to partial differential equations describing the dynamics of water-ice phase transitions reduces spatially distributed relations to a few ordinary differential equations with control parameters and uncertainties. Such equations together with an objective functional that expresses the difference between the amount of ice inside and outside of a cell are considered as a differential game where the aim of the control is to minimize the objective functional, and the aim of the disturbance is opposite. A stable finite-difference scheme for computing the value function is presented. Based on the computed value function, optimal controls are designed to produce cooling protocols ensuring simultaneous freezing of water inside and outside of living cells. Such a regime provides balancing the pressures inside and outside of cells, which prevents cells from injuring.
Keywords: cryopreservation, cooling rate, optimal control, differential game, value function, finite-difference scheme.
@article{TIMM_2010_16_5_a26,
     author = {N. D. Botkin and K.-H. Hoffmann},
     title = {Control design in cryopreservation of living cells},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {233--240},
     year = {2010},
     volume = {16},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a26/}
}
TY  - JOUR
AU  - N. D. Botkin
AU  - K.-H. Hoffmann
TI  - Control design in cryopreservation of living cells
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 233
EP  - 240
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a26/
LA  - en
ID  - TIMM_2010_16_5_a26
ER  - 
%0 Journal Article
%A N. D. Botkin
%A K.-H. Hoffmann
%T Control design in cryopreservation of living cells
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 233-240
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a26/
%G en
%F TIMM_2010_16_5_a26
N. D. Botkin; K.-H. Hoffmann. Control design in cryopreservation of living cells. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 233-240. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a26/

[1] Botkin N. D., “Approximation schemes for finding the value functions for differential games with nonterminal payoff functional”, Analysis, 14:2 (1994), 203–220 | MR | Zbl

[2] Botkin N. D., Hoffmann K-H., Turova V.Ł., Stable Solutions of Hamilton–Jacobi Equations. Application to Control of Freezing Processes, German Research Society (DFG) Priority Program 1253: Optimization with Partial Differential Equations. Preprint-Nr. SPP1253-080, 2009 http://www.am.uni-erlangen.de/home/spp1253/wiki/images/7/7d/Preprint-SPP1253-080.pdf

[3] Caginalp G., “An analysis of a phase field model of a free boundary”, Arch. Rat. Mech. Anal., 92 (1986), 205–245 | DOI | MR | Zbl

[4] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–47 | DOI | MR

[5] Crandall M. G., Lions P. L., “Two approximations of solutions of Hamilton–Jacobi equations”, Math. Comp., 43 (1984), 1–19 | DOI | MR | Zbl

[6] Fremond M., Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002, 490 pp. | MR | Zbl

[7] Hoffmann K.-H., Jiang Lishang, “Optimal control of a phase field model for solidification”, Numer. Funct. Anal. Optimiz., 13:1–2 (1992), 11–27 | DOI | MR | Zbl

[8] Isaacs R., Differential Games, John Wiley, New York, 1965, 408 pp. | MR | Zbl

[9] Krasovskii N. N., Control of a Dynamic System, Nauka, Moscow, 1985, 520 pp. (in Russian) | MR

[10] Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer, New York, 1988, 518 pp. | MR | Zbl

[11] Malafeyev O. A., Troeva M. S., “A weak solution of Hamilton–Jacobi equation for a differential twoperson zero-sum game”, Preprints of the Eight Int. Symp. on Differential Games and Applications (Maastricht, Netherland, July 5–7, 1998), 366–369

[12] Souganidis P. E., “Approximation schemes for viscosity solutions of Hamilton–Jacobi equations”, J. Differ. Equ., 59 (1985), 1–43 | DOI | MR | Zbl

[13] Subbotin A. I., Chentsov A. G., Optimization of Guaranteed Result in Control Problems, Nauka, Moscow, 1981, 287 pp. (in Russian) | MR | Zbl

[14] Subbotin A. I., Generalized Solutions of First Order PDEs, Birkhäuser, Boston, 1995, 312 pp. | MR