Guaranteed result in solving the game problems of motion control
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 223-232
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to investigation of the nonstationary games of approach. The goal of this study is to clarify how the availability of information on the evader's control prehistory to the pursuer affects value of a fixed guaranteed time of the game termination. The issue is explored on the basis of the Method of Resolving Functions, providing sufficient conditions for approach. Governing set-valued mapping is constructed, ensuring guaranteed result without knowledge of the evader's control prehistory. Also condition is deduced which provides for the mapping to be convex-valued. Significance of this condition is illustrated with the “simple motions” example.
Keywords: conflict-controlled process, Pontryagin's condition, set-valued mapping, superpositional measurability, guaranteed time.
@article{TIMM_2010_16_5_a25,
     author = {A. A. Chikrii},
     title = {Guaranteed result in solving the game problems of motion control},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {223--232},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a25/}
}
TY  - JOUR
AU  - A. A. Chikrii
TI  - Guaranteed result in solving the game problems of motion control
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 223
EP  - 232
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a25/
LA  - ru
ID  - TIMM_2010_16_5_a25
ER  - 
%0 Journal Article
%A A. A. Chikrii
%T Guaranteed result in solving the game problems of motion control
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 223-232
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a25/
%G ru
%F TIMM_2010_16_5_a25
A. A. Chikrii. Guaranteed result in solving the game problems of motion control. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 223-232. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a25/

[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[2] Pontryagin L. S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988, 576 pp. | MR

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 455 pp. | MR | Zbl

[4] Pshenichnyi B. N., Ostapenko V. V., Differentsialnye igry, Naukova dumka, Kiev, 1992, 260 pp. | MR

[5] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl

[6] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 216 pp. | MR | Zbl

[7] Chikrii A. A., Konfliktno-upravlyaemye protsessy, Naukova dumka, Kiev, 1992, 384 pp.

[8] Nikolskii M. S., Pervyi pryamoi metod L. S. Pontryagina v differentsialnykh igrakh, Izd-vo MGU, M., 1984, 65 pp.

[9] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1980, 198 pp.

[10] Blagodatskikh A. I., Petrov N. N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udm. un-ta, Izhevsk, 2009, 266 pp. | MR | Zbl

[11] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhauser, Boston–Basel–Berlin, 1990, 461 pp. | MR | Zbl

[12] Gaishun I. V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem, In-t matematiki NAN Belarusi, Minsk, 1999, 408 pp. | MR