Mobile robots controlled by the motion of internal bodies
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 213-222
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Control problems for mobile robotic systems able to move in resistive media due to the motion of internal bodies that interact with the main body of the robot but do not interact with the medium are considered. The optimal periodic motions of the internal bodies that sustain a velocity-periodic motion of the main body relative to the medium and maximize the average speed are searched for. Three types of resistance to the motion of the robot's main body in the medium are considered: piecewise-linear friction, quadratic-law friction, and Coulomb's dry friction.
Keywords: systems with movable internal bodies, motion in resistive environment, optimal control
Mots-clés : mobile robots.
@article{TIMM_2010_16_5_a24,
     author = {F. L. Chernousko and N. N. Bolotnik},
     title = {Mobile robots controlled by the motion of internal bodies},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {213--222},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a24/}
}
TY  - JOUR
AU  - F. L. Chernousko
AU  - N. N. Bolotnik
TI  - Mobile robots controlled by the motion of internal bodies
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 213
EP  - 222
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a24/
LA  - ru
ID  - TIMM_2010_16_5_a24
ER  - 
%0 Journal Article
%A F. L. Chernousko
%A N. N. Bolotnik
%T Mobile robots controlled by the motion of internal bodies
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 213-222
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a24/
%G ru
%F TIMM_2010_16_5_a24
F. L. Chernousko; N. N. Bolotnik. Mobile robots controlled by the motion of internal bodies. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 213-222. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a24/

[1] Zimmermann K., Zeidis I., Behn C., Mechanics of Terrestrial Locomotion, Springer, Heidelberg, 2009

[2] Breguet J.-M., Clavel R., “Stick and slip actuators: design, control, performances and applications”, Proc. Inter. Symp. on Micromechatronics and Human Science (MHS), IEEE, N.Y., 1998, 89–95

[3] Schmoeckel F., Worn H., “Remotedly controllable mobile microrobots acting as nano positioners and intelligent tweezers in scanning electron microscopes (SEMs)”, Proc. Inter. Conf. on Robotics and Automation, IEEE, N.Y., 2001, 3903–3913

[4] Vartholomeos P., Papadopoulos E., “Dynamics, design and simulation of a novel microrobotic platform employing vibration microactuators”, Trans. ASME. Journal of Dynamic Systems, Measurement and Control, 128:1 (2006), 122–133 | DOI

[5] Nagaev R. F., Tamm E. A., “Vibratsionnoe peremeschenie v srede s kvadratichnym soprotivleniem dvizheniyu”, Mashinovedenie, 1980, no. 4, 3–8

[6] Gerasimov S. A., “Nereversivnoe vibratsionnoe dvizhenie”, Mekhatronika, avtomatizatsiya, upravlenie, 2003, no. 3, 48–52

[7] Bolotnik N. N., Tsimmerman K., Zeidis I., Yatsun S. F., “Dinamika upravlyaemykh dvizhenii vibratsionnykh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 5, 157–167

[8] Sobolev N. A., Sorokin K. S., “Eksperimentalnoe issledovanie modeli vibrorobota s vraschayuschimisya massami”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 5, 161–170

[9] Sorokin K. S., “Peremeschenie mekhanizma po naklonnoi sherokhovatoi ploskosti za schet dvizheniya vnutrennikh ostsilliruyuschikh mass”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 6, 150– 158 | MR | Zbl

[10] Chernousko F. L., “O dvizhenii tela, soderzhaschego podvizhnuyu vnutrennyuyu massu”, Dokl. RAN, 405:1 (2005), 56–60 | MR

[11] Chernousko F. L., “Analiz i optimizatsiya dvizheniya tela, upravlyaemogo posredstvom podvizhnoi vnutrennei massy”, Prikladnaya matematika i mekhanika, 70:6 (2006), 915–941 | MR

[12] Figurina T. Yu., “Optimalnoe upravlenie dvizheniem sistemy dvukh tel po pryamoi”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 65–71 | MR

[13] Chernousko F. L., “Optimalnye periodicheskie dvizheniya dvukhmassovoi sistemy v soprotivlyayuscheisya srede”, Prikladnaya matematika i mekhanika, 72:2 (2008), 202–215 | MR

[14] Bolotnik N. N., Figurina T. Yu., “Optimalnoe upravlenie pryamolineinym dvizheniem tverdogo tela po sherokhovatoi ploskosti posredstvom peremescheniya dvukh vnutrennikh mass”, Prikladnaya matematika i mekhanika, 72:2 (2008), 216–229 | MR | Zbl