To the question about stability of attainability domain in abstract problem with constraints of the moment character
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 205-212
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The questions of the approximate validity of constraints in the abstract control problems with moment constraints are considered. The property of attainability domain having the sense of stability to within the closure is investigated. With employment of extension in the class of finitely additive measures, the conditions sufficient for the realization of the above-mentioned property are established.
Keywords: finitely additive measure, attraction set, topology.
@article{TIMM_2010_16_5_a23,
     author = {A. G. Chentsov},
     title = {To the question about stability of attainability domain in abstract problem with constraints of the moment character},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {205--212},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a23/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - To the question about stability of attainability domain in abstract problem with constraints of the moment character
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 205
EP  - 212
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a23/
LA  - ru
ID  - TIMM_2010_16_5_a23
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T To the question about stability of attainability domain in abstract problem with constraints of the moment character
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 205-212
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a23/
%G ru
%F TIMM_2010_16_5_a23
A. G. Chentsov. To the question about stability of attainability domain in abstract problem with constraints of the moment character. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 205-212. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a23/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[2] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd-vo Tbil. un-ta, Tbilisi, 1977, 252 pp. | MR | Zbl

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 455 pp. | MR | Zbl

[4] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 518 pp. | MR

[5] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 287 pp. | MR | Zbl

[6] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[7] Chentsov A. G., Finitely additive measures and relaxations of extremal problems, Plenum Publ. Co., N.Y. etc., 1996, 244 pp. | MR | Zbl

[8] Chentsov A. G., Asymptotic attainability, Kluwer Acad. Publ., Dordrecht etc., 1997, 322 pp. | MR | Zbl

[9] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit-ry, M., 1962, 895 pp.

[10] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. I, UGTU-UPI, Ekaterinburg, 2009, 389 pp.

[11] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer, Dordrecht–Boston–London, 2002, 408 pp. | MR | Zbl

[12] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR

[13] Contemporary Mathematics and its Applications, 17, Optimal Control, 2004, 3–153 | DOI | MR | Zbl

[14] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR

[15] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[16] Chentsov A. G., “K voprosu o rasshirenii abstraktnykh zadach o dostizhimosti”, Izv. Uralskogo gos. un-ta, 46 (2006), 220–241 | MR | Zbl

[17] Kashirtseva T. Yu., Chentsov A. G., “Ob odnom predstavlenii puchka dopustimykh traektorii v lineinoi zadache upravleniya s impulsnym ogranicheniem”, Izv. vuzov. Matematika, 2005, no. 12, 15–27 | MR