On stability of biaxial tension of a square plate in a gradient mechanical system
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 187-195
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with the problem of stability of a biaxial tension process of a square plate made from nonlinear material. The load is applied through two ideal elastic rods. The bifurcation sets and the separatrix of this gradient mechanical system are determined. The stability of deformation process is studied by the method of constructing of the discriminantal cone for the Hesse matrix of the system potential function.
Keywords: nonconvex potential, separatrix, discriminantal cone, stability of deformation process.
Mots-clés : Hesse matrix, bifurcations
@article{TIMM_2010_16_5_a21,
     author = {V. V. Struzhanov},
     title = {On stability of biaxial tension of a~square plate in a~gradient mechanical system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {187--195},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a21/}
}
TY  - JOUR
AU  - V. V. Struzhanov
TI  - On stability of biaxial tension of a square plate in a gradient mechanical system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 187
EP  - 195
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a21/
LA  - ru
ID  - TIMM_2010_16_5_a21
ER  - 
%0 Journal Article
%A V. V. Struzhanov
%T On stability of biaxial tension of a square plate in a gradient mechanical system
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 187-195
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a21/
%G ru
%F TIMM_2010_16_5_a21
V. V. Struzhanov. On stability of biaxial tension of a square plate in a gradient mechanical system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 187-195. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a21/

[1] Gilmor R., Prikladnaya teoriya katastrof, v 2 kn., kn. 1, Mir, M., 1984, 350 pp. | Zbl

[2] Sedov L. I., Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1970, 492 pp. | MR

[3] Ilyushin A. A., Plastichnost, Izd-vo AN SSSR, M., 1963, 272 pp.

[4] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp. | MR

[5] Poston T., Styuart I., Teoriya katastrof i eë prilozheniya, Mir, M., 1980, 608 pp. | MR | Zbl

[6] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989, 624 pp. | MR | Zbl

[7] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982, 304 pp. | MR

[8] Struzhanov V. V., Prosviryakov E. Yu., Burmasheva N. V., “Ob odnom metode postroeniya edinogo potentsiala”, Vychislitelnaya mekhanika sploshnykh sred, 2:2 (2009), 96–107