Optimal control problems with moving targets
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 16-21
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Two optimal control problems of approaching and aiming with moving targets are under consideration. It is supposed that the target represents a peculiar disturbance generator due to which the problems are reduced to optimal control problems under set-membership uncertainty. Various types of information available on behaviour of the object and the target are investigated. According that, disclosable and closable combined loops are defined. Short description of methods of implementing these loops is given.
Keywords: approaching, aiming, optimal control, optimal loops, on-line control.
@article{TIMM_2010_16_5_a2,
     author = {R. Gabasov and N. M. Dmitruk and F. M. Kirillova and E. I. Poyasok},
     title = {Optimal control problems with moving targets},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {16--21},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a2/}
}
TY  - JOUR
AU  - R. Gabasov
AU  - N. M. Dmitruk
AU  - F. M. Kirillova
AU  - E. I. Poyasok
TI  - Optimal control problems with moving targets
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 16
EP  - 21
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a2/
LA  - ru
ID  - TIMM_2010_16_5_a2
ER  - 
%0 Journal Article
%A R. Gabasov
%A N. M. Dmitruk
%A F. M. Kirillova
%A E. I. Poyasok
%T Optimal control problems with moving targets
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 16-21
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a2/
%G ru
%F TIMM_2010_16_5_a2
R. Gabasov; N. M. Dmitruk; F. M. Kirillova; E. I. Poyasok. Optimal control problems with moving targets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 16-21. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a2/

[1] Bellman R., Protsessy regulirovaniya s adaptatsiei, Nauka, M., 1964, 360 pp. | Zbl

[2] Pontryagin L. S, Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976, 392 pp. | MR | Zbl

[3] Gabasov R., Dmitruk N. M., Kirillova F. M., “Optimalnoe upravlenie mnogomernymi sistemami po netochnym izmereniyam ikh vykhodnykh signalov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 10, no. 2, Ekaterinburg, 2004, 35–57 | MR | Zbl

[4] Gabasov R., Kirillova F. M., Poyasok E. I., “Optimalnoe upravlenie lineinymi sistemami v usloviyakh neopredelennosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 56–72

[5] Balashevich N. V., Gabasov R., Kirillova F. M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 40:6 (2000), 838–859 | MR | Zbl

[6] Gabasov R., Kirillova F. M., Kostyukova O. I., “Optimizatsiya lineinoi sistemy upravleniya v rezhime realnogo vremeni”, Izv. RAN. Tekhn. kibernetika, 1992, no. 4, 3–19 | MR | Zbl

[7] Gabasov R., Kirillova F. M., Kostina E. A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. I. Odnokratnoe zamykanie”, Avtomatika i telemekhanika, 1996, no. 7, 121–130 | MR | Zbl

[8] Gabasov R., Kirillova F. M., Kostina E. A., “Zamykaemye obratnye svyazi po sostoyaniyu dlya optimizatsii neopredelennykh sistem upravleniya. II. Mnogokratno zamykaemye obratnye svyazi”, Avtomatika i telemekhanika, 1996, no. 8, 90–99 | MR | Zbl

[9] Gabasov R., Kirillova F. M., Pavlenok N. S., “Optimalnoe nablyudenie i upravlenie v lineinykh sistemakh”, Sovremennaya matematika i ee prilozheniya. Optimalnoe upravlenie, 23, In-t kibernetiki AN Gruzii, Tbilisi, 2005, 7–33 | MR

[10] Gabasov R., Kirillova F. M., “Sintez optimalnykh upravlenii tipa kombinirovannoi svyazi”, Dokl. NAN Belarusi, 46:2 (2002), 21–24 | MR | Zbl

[11] Gabasov R., Kirillova F. M., Poyasok E. I., “Optimalnoe preposteriornoe nablyudenie dinamicheskikh sistem”, Avtomatika i telemekhanika, 2009, no. 8, 70–83 | MR | Zbl