$C^2(D)$-integral approximation of nonsmooth functions conserving $\varepsilon(D)$-extremum points
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 159-169
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new nonlocal approximation method of nonsmooth or not enough smooth functions is considered in the paper. As the result we get twice differentiable functions, conserving to $\varepsilon(D)$-extremum points. Using such functions, a method of second order, converging to $\varepsilon(D)$-stationary points, is constructed. An optimization algorithm, converging to a stationary point with superlinear velocity, is described.
Keywords: Lipschitz functions, generalized gradients, Clarke subdifferentials, matrices of second derivatives, Newton's methods for Lipschitz functions.
@article{TIMM_2010_16_5_a18,
     author = {I. M. Prudnikov},
     title = {$C^2(D)$-integral approximation of nonsmooth functions conserving $\varepsilon(D)$-extremum points},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {159--169},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a18/}
}
TY  - JOUR
AU  - I. M. Prudnikov
TI  - $C^2(D)$-integral approximation of nonsmooth functions conserving $\varepsilon(D)$-extremum points
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 159
EP  - 169
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a18/
LA  - ru
ID  - TIMM_2010_16_5_a18
ER  - 
%0 Journal Article
%A I. M. Prudnikov
%T $C^2(D)$-integral approximation of nonsmooth functions conserving $\varepsilon(D)$-extremum points
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 159-169
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a18/
%G ru
%F TIMM_2010_16_5_a18
I. M. Prudnikov. $C^2(D)$-integral approximation of nonsmooth functions conserving $\varepsilon(D)$-extremum points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 159-169. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a18/

[1] Proudnikov I. M., “New constructions for local approximation of Lipschitz functions. I”, Nonlinear analysis, 53:3 (2003), 373–390 | DOI | MR

[2] Rocafellar R. T., Convex analysis, Wiley, N.Y., 1972

[3] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza. Kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp. | MR

[4] Prudnikov I. M., “Subdifferentstal Klarka dlya lipshitsevykh mnogoznachnykh otobrazhenii”, Kibernetika, 1992, no. 1, 176–180 | MR | Zbl

[5] Prudnikov I. M., “Nizhnie vypuklye approksimatsii dlya lipshitsevykh funktsii”, Zhurn. vychisl. matematiki i matem. fiziki, 40:3 (2000), 378–386 | MR | Zbl

[6] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 320 pp. | MR | Zbl

[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR | Zbl

[8] Gupal A. M., Stokhasticheskie metody resheniya negladkikh ekstremalnykh zadach, Naukova dumka, Kiev, 1979 | MR

[9] Mikhalevich V. S., Gupal A. M., Norkin V. I., Metody nevypukloi optimizatsii, Nauka, M., 1987 | MR | Zbl

[10] Shor N. Z., Metody minimizatsii nedifferentsiruemykh funktsii i ikh prilozheniya, Naukova dumka, Kiev, 1979, 199 pp. | MR | Zbl

[11] Nurminskii E. A., “Kvazigradientnyi metod rescheniya zadachi nelineinogo programmirovaniya”, Kibernetika, 1973, no. 1, 122–125 | MR | Zbl

[12] Polyakova L. N., “O metode tochnykh shtrafnykh funktsii”, Zhurn. vychisl. matematiki i matem. fiziki, 41:2 (2001), 225–238 | MR | Zbl

[13] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950

[14] Oleinik O. A., “Razryvnye resheniya nelineinykh differentsialnykh uravnenii”, Uspekhi matem. nauk, 12:3(75) (1957), 3–73 | MR | Zbl

[15] Kruzhkov S. N., “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala. I. Postanovka zadach, teoremy suschestvovaniya, edinstvennosti i ustoichivosti, nekotorye svoistva reshenii”, Matem. sb., 98(140):3 (1975), 450–493 | MR | Zbl

[16] Prudnikov I. M., “Metod globalnoi optimizatsii i otsenka skorosti ego skhodimosti”, Avtomatika i telemekhanika, 1993, no. 12, 72–81 | MR | Zbl