$C^2(D)$-integral approximation of nonsmooth functions conserving $\varepsilon(D)$-extremum points
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 159-169
Voir la notice de l'article provenant de la source Math-Net.Ru
A new nonlocal approximation method of nonsmooth or not enough smooth functions is considered in the paper. As the result we get twice differentiable functions, conserving to $\varepsilon(D)$-extremum points. Using such functions, a method of second order, converging to $\varepsilon(D)$-stationary points, is constructed. An optimization algorithm, converging to a stationary point with superlinear velocity, is described.
Keywords:
Lipschitz functions, generalized gradients, Clarke subdifferentials, matrices of second derivatives, Newton's methods for Lipschitz functions.
@article{TIMM_2010_16_5_a18,
author = {I. M. Prudnikov},
title = {$C^2(D)$-integral approximation of nonsmooth functions conserving $\varepsilon(D)$-extremum points},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {159--169},
publisher = {mathdoc},
volume = {16},
number = {5},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a18/}
}
TY - JOUR AU - I. M. Prudnikov TI - $C^2(D)$-integral approximation of nonsmooth functions conserving $\varepsilon(D)$-extremum points JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 159 EP - 169 VL - 16 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a18/ LA - ru ID - TIMM_2010_16_5_a18 ER -
%0 Journal Article %A I. M. Prudnikov %T $C^2(D)$-integral approximation of nonsmooth functions conserving $\varepsilon(D)$-extremum points %J Trudy Instituta matematiki i mehaniki %D 2010 %P 159-169 %V 16 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a18/ %G ru %F TIMM_2010_16_5_a18
I. M. Prudnikov. $C^2(D)$-integral approximation of nonsmooth functions conserving $\varepsilon(D)$-extremum points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 159-169. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a18/