Asymptotically stable statistically weakly invariant sets for controlled systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 135-142
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This note is based on the talk given at the conference “Actual problems of stability and control theory” and dedicated to the extension of the known theorem by E. A. Barbashin and N. N. Krasovskii (1952) on asymptotic stability of an equilibrium state for an autonomous system of differential equations. Our efforts are mainly concentrated on nonautonomous differential inclusions with closed-valued (but not necessarily compact-valued) right-hand sides, where the equilibrium state is a given weakly invariant or statistically weakly invariant (with respect to the solutions of the inclusion) set. The statements are formulated in terms of the Hausdorff–Bebutov metric, the dynamical system of translations corresponding to the right-hand side of the differential inclusion, and the weakly invariant set corresponding to the inclusion.
Keywords: stability theory, differential inclusions, weakly invariant and statistically weakly invariant sets.
@article{TIMM_2010_16_5_a15,
     author = {E. A. Panasenko and L. I. Rodina and E. L. Tonkov},
     title = {Asymptotically stable statistically weakly invariant sets for controlled systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {135--142},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a15/}
}
TY  - JOUR
AU  - E. A. Panasenko
AU  - L. I. Rodina
AU  - E. L. Tonkov
TI  - Asymptotically stable statistically weakly invariant sets for controlled systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 135
EP  - 142
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a15/
LA  - ru
ID  - TIMM_2010_16_5_a15
ER  - 
%0 Journal Article
%A E. A. Panasenko
%A L. I. Rodina
%A E. L. Tonkov
%T Asymptotically stable statistically weakly invariant sets for controlled systems
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 135-142
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a15/
%G ru
%F TIMM_2010_16_5_a15
E. A. Panasenko; L. I. Rodina; E. L. Tonkov. Asymptotically stable statistically weakly invariant sets for controlled systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 135-142. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a15/

[1] Barbashin E. A., Krasovskii N. N., “Ob ustoichivosti dvizheniya v tselom”, Dokl. AN SSSR, 86:6 (1952), 146–152

[2] Barbashin E. A., Funktsii Lyapunova, Nauka, M., 1970, 240 pp. | MR | Zbl

[3] Panasenko E. A., Tonkov E. L., “Invariantnye i ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii”, Tr. Matematicheskogo in-ta im. V. A. Steklova RAN, 262, 2008, 202–221 | MR | Zbl

[4] Panasenko E. A., Tonkov E. L., “Rasprostranenie teorem E. A. Barbashina i N. N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 185–201

[5] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., 1949, 550 pp.

[6] Aubin J.-P., Viability Theory, Birkhauser, Boston–Basel–Berlin, 1991, 543 pp. | MR | Zbl

[7] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 300 pp. | MR | Zbl

[8] Rodina L. I., Tonkov E. L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy, nebluzhdaemost i minimalnyi tsentr prityazheniya”, Nelineinaya dinamaka, 5:2 (2009), 265–288

[9] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 223 pp. | MR