On the differential game of interception
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 113-126
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article discusses the formalization of the differential game, proposed in Sverdlovsk-Ekaterinburg: strategy classes, generalized motion, value, and the saddle point of the game. On the basis of unification of the game can be traced out to a generalized minimax Hamilton–Jacobi equations. On the basis of a degenerate parabolic equations are constructed minimax and maximin control scheme with stochastic leader.
Keywords: unification of the game, Hamilton–Jacobi equation, the degeneracy of the parabolic equation, stochastic leader.
@article{TIMM_2010_16_5_a13,
     author = {N. N. Krasovskii and A. N. Kotel'nikova},
     title = {On the differential game of interception},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {113--126},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a13/}
}
TY  - JOUR
AU  - N. N. Krasovskii
AU  - A. N. Kotel'nikova
TI  - On the differential game of interception
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 113
EP  - 126
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a13/
LA  - ru
ID  - TIMM_2010_16_5_a13
ER  - 
%0 Journal Article
%A N. N. Krasovskii
%A A. N. Kotel'nikova
%T On the differential game of interception
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 113-126
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a13/
%G ru
%F TIMM_2010_16_5_a13
N. N. Krasovskii; A. N. Kotel'nikova. On the differential game of interception. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 113-126. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a13/

[1] Fleming W. H., “A note on differential games of prescribed duration”, Contributions to the Theory of Games, v. 3, Ann. Math. Stud., 39, Princeton Univ. Press, Princeton, 1957, 407–412 | MR

[2] Isaacs R., Differential Games, John Wiley and Sons, N.Y., 1965 | MR | Zbl

[3] Bellman R., Introduction to the Mathematical Theory of Control Processes, v. 1, Academic Press, N.Y., 1967 ; v. 2, 1971 | MR | Zbl

[4] Pontryagin L. S., “Matematicheskaya teoriya optimalnykh protsessov i differentsialnye igry”, Trudy MIAN, 169, 1985, 119–158 | MR | Zbl

[5] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[6] Krasovskii N. N., “K zadache unifikatsii differentsialnykh igr”, Dokl. AN SSSR, 226:6 (1976), 1260–1263 | MR

[7] Krasovskii N. N., “Unifikatsiya differentsialnykh igr”, Igrovye zadachi upravleniya, Tr. UrO RAN, 24, 1977, 32–45 | MR

[8] Ushakov V. N., “K zadache postroeniya stabilnykh mostov v differentsialnoi igre sblizheniya-ukloneniya”, Izvestiya AN SSSR. Tekhn. kibernetika, 1980, no. 4, 29–36 | MR | Zbl

[9] Alekseichik M. I., “Dalneishaya formalizatsiya osnovnykh elementov antagonisticheskoi differentsialnoi igry”, Matematicheskii analiz i ego prilozheniya, 7, Gos un-t, Rostov-na-Donu, 1975, 191–199

[10] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy analiticheskoi optimizatsii, In-t komp. issledovanii, M.–Izhevsk, 2003

[11] W. H. Fleming, “The Cauchy problem for degenerate parabolic equations”, J. Math. Mech., 13:6 (1964), 987–1008 | MR | Zbl

[12] Kruzhkov S. N., “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 70(112):3 (1966), 394–415 | MR | Zbl

[13] Kruzhkov S. N., “Nelineinye uravneniya pervogo poryadka i svyazannye s nimi differentsialnye igry”, Uspekhi matem. nauk, 24:2(146) (1969), 227–228 | MR | Zbl

[14] Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[15] Krasovskii N. N., “Igra sblizheniya-ukloneniya so stokhasticheskim povodyrem”, Dokl. AN SSSR, 237:5 (1977), 1020–1023 | MR

[16] W. H. Fleming, “The convergence problem for differential games”, J. Math. Anal. Appl., 3 (1961), 102–116 | DOI | MR | Zbl

[17] Krasovskii N. N., “Differentsialnye igry. Approksimatsionnye i formalnye modeli”, Matem. sb., 107(149):4 (1978), 511–571 | MR | Zbl

[18] Kryazhimskii A. V., “K teorii pozitsionnykh differentsialnykh igr sblizheniya i ukloneniya”, Dokl. AN SSSR, 239:4 (1978), 779–782 | MR

[19] Barabanova N. N., Subbotin A. I., “O strategiyakh ukloneniya v igrovykh zadachakh o vstreche dvizhenii”, Prikl. matematika i mekhanika, 34:5 (1970), 796–803 | MR | Zbl

[20] Barabanova N. N., Subbotin A. I., “O klassakh strategii v differentsialnykh igrakh ukloneniya”, Prikl. matematika i mekhanika, 35:3 (1971), 385–392 | MR | Zbl

[21] Pontryagin L. S., Mischenko E. F., “Zadacha ob ubeganii odnogo upravlyaemogo ob'ekta ot drugogo”, Dokl. AN SSSR, 189:4 (1969), 721–723 | Zbl

[22] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1974

[23] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974 | MR | Zbl

[24] Kushner G. D., Stokhasticheskaya ustoichivost i upravlenie, Mir, M., 1969