Optimal control of thermal convection
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 103-112

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of optimal control of distributed and boundary thermal sources for a stationary model of natural thermal convection of a high-viscosity inhomogeneous incompressible fluid in the Boussinesq approximation is investigated. Some conditions of solvability of the problem are given, necessary and sufficient conditions of optimality are specified. For the special case of a quality functional conditions of optimality and corresponding adjoint problem defining gradient of the functional are written. Procedure of numerical finding of optimal control based on gradient methods is described. Results of numerical experiments are presented.
Keywords: optimal control, cost functional, thermal convection, optimality conditions, gradient method.
@article{TIMM_2010_16_5_a12,
     author = {A. I. Korotkii and D. A. Kovtunov},
     title = {Optimal control of thermal convection},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {103--112},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a12/}
}
TY  - JOUR
AU  - A. I. Korotkii
AU  - D. A. Kovtunov
TI  - Optimal control of thermal convection
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 103
EP  - 112
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a12/
LA  - ru
ID  - TIMM_2010_16_5_a12
ER  - 
%0 Journal Article
%A A. I. Korotkii
%A D. A. Kovtunov
%T Optimal control of thermal convection
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 103-112
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a12/
%G ru
%F TIMM_2010_16_5_a12
A. I. Korotkii; D. A. Kovtunov. Optimal control of thermal convection. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 103-112. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a12/