A generalized method of characteristics in the theory of Hamilton--Jacobi equations and conservation laws
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 95-102
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper two types of generalized solutions of the Cauchy problem are presented for the Hamilton–Jacobi–Bellman equation and for the scalar conservation law. The connections between the generalized solutions are obtained. A description of the structure of the the singular set is provided for the minimax/viscosity solution of the Hamilton–Jacobi equation. The representative formula is suggested for the conservation law in terms of classical characteristics.
Keywords:
Hamilton–Jacobi–Bellman equation, minimax/viscosity solution, conservation law, method of characteristics.
@article{TIMM_2010_16_5_a11,
author = {E. A. Kolpakova},
title = {A generalized method of characteristics in the theory of {Hamilton--Jacobi} equations and conservation laws},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {95--102},
publisher = {mathdoc},
volume = {16},
number = {5},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a11/}
}
TY - JOUR AU - E. A. Kolpakova TI - A generalized method of characteristics in the theory of Hamilton--Jacobi equations and conservation laws JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 95 EP - 102 VL - 16 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a11/ LA - ru ID - TIMM_2010_16_5_a11 ER -
%0 Journal Article %A E. A. Kolpakova %T A generalized method of characteristics in the theory of Hamilton--Jacobi equations and conservation laws %J Trudy Instituta matematiki i mehaniki %D 2010 %P 95-102 %V 16 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a11/ %G ru %F TIMM_2010_16_5_a11
E. A. Kolpakova. A generalized method of characteristics in the theory of Hamilton--Jacobi equations and conservation laws. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 95-102. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a11/