Voir la notice du chapitre de livre
@article{TIMM_2010_16_5_a11,
author = {E. A. Kolpakova},
title = {A generalized method of characteristics in the theory of {Hamilton{\textendash}Jacobi} equations and conservation laws},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {95--102},
year = {2010},
volume = {16},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a11/}
}
TY - JOUR AU - E. A. Kolpakova TI - A generalized method of characteristics in the theory of Hamilton–Jacobi equations and conservation laws JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 95 EP - 102 VL - 16 IS - 5 UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a11/ LA - ru ID - TIMM_2010_16_5_a11 ER -
E. A. Kolpakova. A generalized method of characteristics in the theory of Hamilton–Jacobi equations and conservation laws. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 95-102. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a11/
[1] Crandall M., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl
[2] Subbotin A. I., Obobschennye resheniya uravneniya v chastnykh proizvodnykh pervogo poryadka: perspektivy dinamicheskoi optimizatsii, Institut komp. issledovanii, M.–Izhevsk, 2003, 336 pp. | Zbl
[3] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 832 pp. | MR
[4] Subbotina N. N., Kolpakova E. A., “O strukture lipshitsevykh minimaksnykh reshenii uravneniya Gamiltona–Yakobi–Bellmana v terminakh klassicheskikh kharakteristik”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 202–218
[5] Oleinik O. A., “O zadache Koshi dlya nelineinykh uravnenii v klasse razryvnykh funktsii”, Dokl. AN SSSR, 95:3 (1954), 451–454 | MR
[6] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968, 687 pp. | MR
[7] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical optimization”, Modern Mathematics and its Applications, 135 (2006), 2957–3091 | MR
[8] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Mat. sb., 81(123):2 (1970), 228–255 | MR | Zbl
[9] Panov E. Yu., “O edinstvennosti resheniya zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka s odnoi dopustimoi strogo vypukloi entropiei”, Mat. zametki, 55:5 (1994), 116–129 | MR | Zbl
[10] Sobolev S. L., Uravneniya matematicheskoi fiziki, Nauka, M., 1966, 444 pp. | MR