A generalized method of characteristics in the theory of Hamilton–Jacobi equations and conservation laws
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 95-102
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper two types of generalized solutions of the Cauchy problem are presented for the Hamilton–Jacobi–Bellman equation and for the scalar conservation law. The connections between the generalized solutions are obtained. A description of the structure of the the singular set is provided for the minimax/viscosity solution of the Hamilton–Jacobi equation. The representative formula is suggested for the conservation law in terms of classical characteristics.
Keywords: Hamilton–Jacobi–Bellman equation, minimax/viscosity solution, conservation law, method of characteristics.
@article{TIMM_2010_16_5_a11,
     author = {E. A. Kolpakova},
     title = {A generalized method of characteristics in the theory of {Hamilton{\textendash}Jacobi} equations and conservation laws},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {95--102},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a11/}
}
TY  - JOUR
AU  - E. A. Kolpakova
TI  - A generalized method of characteristics in the theory of Hamilton–Jacobi equations and conservation laws
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 95
EP  - 102
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a11/
LA  - ru
ID  - TIMM_2010_16_5_a11
ER  - 
%0 Journal Article
%A E. A. Kolpakova
%T A generalized method of characteristics in the theory of Hamilton–Jacobi equations and conservation laws
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 95-102
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a11/
%G ru
%F TIMM_2010_16_5_a11
E. A. Kolpakova. A generalized method of characteristics in the theory of Hamilton–Jacobi equations and conservation laws. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 95-102. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a11/

[1] Crandall M., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl

[2] Subbotin A. I., Obobschennye resheniya uravneniya v chastnykh proizvodnykh pervogo poryadka: perspektivy dinamicheskoi optimizatsii, Institut komp. issledovanii, M.–Izhevsk, 2003, 336 pp. | Zbl

[3] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 832 pp. | MR

[4] Subbotina N. N., Kolpakova E. A., “O strukture lipshitsevykh minimaksnykh reshenii uravneniya Gamiltona–Yakobi–Bellmana v terminakh klassicheskikh kharakteristik”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 202–218

[5] Oleinik O. A., “O zadache Koshi dlya nelineinykh uravnenii v klasse razryvnykh funktsii”, Dokl. AN SSSR, 95:3 (1954), 451–454 | MR

[6] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968, 687 pp. | MR

[7] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical optimization”, Modern Mathematics and its Applications, 135 (2006), 2957–3091 | MR

[8] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Mat. sb., 81(123):2 (1970), 228–255 | MR | Zbl

[9] Panov E. Yu., “O edinstvennosti resheniya zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka s odnoi dopustimoi strogo vypukloi entropiei”, Mat. zametki, 55:5 (1994), 116–129 | MR | Zbl

[10] Sobolev S. L., Uravneniya matematicheskoi fiziki, Nauka, M., 1966, 444 pp. | MR