Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 82-94
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a two-dimensional lattice of the coupled van der Pol oscillators obtained by the standard space discretization of a nonlinear wave equation $$ u_{tt}+\varepsilon(u^2-1)u_t+u=a_1^2u_{xx}+a_2^2u_{yy},\qquad a_1,a_2=\text{const}>0,\quad0\varepsilon\ll1, $$ in the unit square subject to the zero Neumann boundary conditions. We prove that the related system of ordinary differential equations owns attractors which have not analogues in the original boundary problem. They are stable invariant tori of different dimensions. It is shown that the number of this tori grows without limit as the number of equations in the lattice increases.
Keywords: lattice of connected oscillators, attractor, bufferness.
Mots-clés : invariant torus
@article{TIMM_2010_16_5_a10,
     author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov},
     title = {Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {82--94},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a10/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - E. F. Mishchenko
AU  - N. Kh. Rozov
TI  - Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 82
EP  - 94
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a10/
LA  - ru
ID  - TIMM_2010_16_5_a10
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A E. F. Mishchenko
%A N. Kh. Rozov
%T Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 82-94
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a10/
%G ru
%F TIMM_2010_16_5_a10
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. Multifrequency self-oscillations in two-dimensional lattices of coupled oscillators. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 82-94. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a10/

[1] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., Asimptoticheskie metody issledovaniya periodicheskikh reshenii nelineinykh giperbolicheskikh uravnenii, Tr. MIAN, 222, Nauka, M., 1998, 191 pp. | MR | Zbl

[2] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004, 408 pp.

[3] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005, 432 pp.

[4] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Yavlenie bufernosti v rezonansnykh sistemakh giperbolicheskikh uravnenii”, UMN, 55:2(332) (2000), 95–120 | MR | Zbl

[5] Kolesov A. Yu., Rozov N. Kh., “Asimptoticheskaya teoriya kolebanii v sisteme Vitta”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozh., 67, VINITI, M., 1999, 5–68 | MR | Zbl

[6] Kolesov A. Yu., Rozov N. Kh., “Yavlenie bufernosti v RCLG-avtogeneratore: teoreticheskii analiz i rezultaty eksperimenta”, Tr. MIAN, 233, 2001, 153–207 | MR | Zbl

[7] Vitt A. A., “Raspredelennye avtokolebatelnye sistemy”, ZhTF, 4:1 (1934), 144–157

[8] Scott A. C., “Distributed Multimode oscillators of one and two spatial dimensions”, IEEE Trans. on circuit theory, 17:1 (1970), 55–80 | DOI

[9] Scott A. C., “Tunnel diode arrays for information processing and storage”, IEEE Trans. Syst., Man, Cybern., 1:3 (1971), 267–275 | DOI

[10] Skott E., Nelineinaya nauka: rozhdenie i razvitie kogerentnykh struktur, Fizmatlit, M., 2007, 560 pp.

[11] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 504 pp. | MR

[12] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Izd-vo LGU, L., 1991, 144 pp. | MR