On choice of route in nonlinear problem of sequential approach
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 8-15
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a problem in which a controlled object a nonlinear third-order system aims to sequentially approach group points in a minimal time. The necessary condition of optimal a choice of route is proved.
Keywords: control, nonlinear object, sequential approach.
@article{TIMM_2010_16_5_a1,
     author = {Yu. I. Berdyshev},
     title = {On choice of route in nonlinear problem of sequential approach},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {8--15},
     year = {2010},
     volume = {16},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a1/}
}
TY  - JOUR
AU  - Yu. I. Berdyshev
TI  - On choice of route in nonlinear problem of sequential approach
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 8
EP  - 15
VL  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a1/
LA  - ru
ID  - TIMM_2010_16_5_a1
ER  - 
%0 Journal Article
%A Yu. I. Berdyshev
%T On choice of route in nonlinear problem of sequential approach
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 8-15
%V 16
%N 5
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a1/
%G ru
%F TIMM_2010_16_5_a1
Yu. I. Berdyshev. On choice of route in nonlinear problem of sequential approach. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 5, pp. 8-15. http://geodesic.mathdoc.fr/item/TIMM_2010_16_5_a1/

[1] Pontryagin L. S, Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[3] Berdyshev Yu. I., “O odnoi zadache posledovatelnogo sblizheniya nelineinoi upravlyaemoi sistemoi tretego poryadka s gruppoi dvizhuschikhsya tochek”, Prikl. matematika i mekhanika, 66:5 (2002), 742–752 | MR | Zbl

[4] Berdyshev Yu. I., “O zadache posledovatelnogo obkhoda odnim nelineinym ob'ektom dvukh dvizhuschikhsya tochek”, Trudy Instituta matematiki i mekhaniki UrO RAN, 11, no. 1, Ekaterinburg, 2005, 43–52 | MR | Zbl

[5] Berdyshev Yu. I., Chentsov A. G., “Optimizatsiya vzveshennogo kriteriya v odnoi zadache upravleniya”, Kibernetika, 1986, no. 1, 59–64 | MR | Zbl

[6] Morina S. I., Chentsov A. G., Zadacha posledovatelnogo sblizheniya pri kombinirovannykh ogranicheniyakh na vybor upravlenii, Dep. v VINITI 02.09.87, No 6461-V87, Institut matematiki i mekhaniki UNTs, Sverdlovsk, 1987, 27 pp.

[7] Petrosyan L. A., Tomskii G. V., Geometriya prostogo presledovaniya, Nauka, Novosibirsk, 1983, 143 pp. | MR

[8] Bellman R., “Primenenie dinamicheskogo programmirovaniya k zadache o kommivoyazhere”, Kiberneticheskii sbornik, 9, 1964, 219–228 | MR

[9] Korotaeva L. N., Sesekin A. N., Chentsov A. G., “Ob odnoi modifikatsii metoda dinamicheskogo programmirovaniya v zadache posledovatelnogo sblizheniya”, Zhurnal vychisl. matematiki i mat. fiziki, 29:8 (1989), 1107–1113 | MR | Zbl

[10] Melamed I. I., Sergeev S. I., “Zadachi kommivoyazhera. Voprosy teorii”, Avtomatika i telemekhanika, 1989, no. 1, 3–34

[11] Chentsov A. G., Ekstremalnye zadachi marshrutizatsii i raspredeleniya zadanii: voprosy teorii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008, 240 pp.

[12] Aizeke R., Differentsialnye igry, Mir, M., 1967, 497 pp. | MR

[13] Dubins L. E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions fnd tangents”, Amer. J. Math., 79 (1957), 497–516 | DOI | MR | Zbl

[14] Chernousko F. L., Melikyan A. A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978, 270 pp. | MR

[15] Cockayne E., “Plane pursuit with curvature constraints”, SIAM J. Appl. Math., 15:6 (1967), 197–220 | DOI | MR

[16] Patsko B. C., Pyatko S. G., Fedotov A. A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 8–11 | MR

[17] Khamza M. Kh., Kolas I., Rungalder V., “Optimalnye po bystrodeistviyu traektorii poleta v zadache presledovaniya”, Upravlenie kosmicheskimi apparatami i korablyami, Nauka, M., 1971, 410–418

[18] Pesvaradi T., “Optimal horizontal quidance law for Aircraft in the terminal area”, IEEE Trans. Automat. Control, 17:6 (1972), 763–772 | DOI | MR

[19] Berdyshev Yu. I., “Sintez optimalnogo po bystrodeistviyu upravleniya dlya odnoi nelineinoi sistemy chetvertogo poryadka”, Prikl. matematika i mekhanika, 39:6 (1975), 985–994 | MR | Zbl