Jackson inequality in $L_2(\mathbb R^N)$ with generalized modulus of continuity
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 93-99
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The sharp Jackson inequality is proved for the space of entire functions of many variables with mean-square norm for an arbitrary modulus of continuity generated by a difference operator with constant coefficients.
Keywords: Jackson inequality, generalized modulus of continuity, multidimensional approximation.
@article{TIMM_2010_16_4_a9,
     author = {S. N. Vasil'ev},
     title = {Jackson inequality in $L_2(\mathbb R^N)$ with generalized modulus of continuity},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {93--99},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a9/}
}
TY  - JOUR
AU  - S. N. Vasil'ev
TI  - Jackson inequality in $L_2(\mathbb R^N)$ with generalized modulus of continuity
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 93
EP  - 99
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a9/
LA  - ru
ID  - TIMM_2010_16_4_a9
ER  - 
%0 Journal Article
%A S. N. Vasil'ev
%T Jackson inequality in $L_2(\mathbb R^N)$ with generalized modulus of continuity
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 93-99
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a9/
%G ru
%F TIMM_2010_16_4_a9
S. N. Vasil'ev. Jackson inequality in $L_2(\mathbb R^N)$ with generalized modulus of continuity. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 93-99. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a9/

[1] Chernykh N.I., “O neravenstve Dzheksona v $L_2$”, Tr. MIAN, 88, 1967, 71–74 | MR | Zbl

[2] Chernykh N.I., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Mat. zametki, 2:5 (1967), 513–522 | MR | Zbl

[3] Babenko A.G., “Minimalnaya konstanta Dzheksona - Stechkina v $L_2$”, Sovremennoe sostoyanie i perspektivy razvitiya matematiki v ramkakh programmy “Kazakhstan v tretem tysyacheletii”, tr. Mezhdunar. konf., In-t matematiki, Almaty, 2001, 72–76

[4] Yudin V.A., “Mnogomernaya teorema Dzheksona v $L_2$”, Mat. zametki, 29:2 (1981), 309–315 | MR | Zbl

[5] Ibragimov N.I., Nasibov V.G., “Ob otsenke nailuchshego priblizheniya summiruemoi funktsii na veschestvennoi osi posredstvom tselykh funktsii konechnoi stepeni”, Dokl. AN SSSR, 194:5 (1970), 1013–1016 | MR | Zbl

[6] Popov V.Yu., “O nailuchshikh srednekvadraticheskikh priblizheniyakh tselymi funktsiyami eksponentsialnogo tipa”, Izv. vuzov. Matematika, 1972, no. 6, 65–73

[7] Popov V.Yu., “O tochnykh konstantakh v neravenstvakh Dzheksona dlya nailuchshikh sfericheskikh srednekvadratichnykh priblizhenii”, Izv. vuzov. Matematika, 1981, no. 12, 67–78

[8] Babenko A.G., “Tochnoe neravenstvo Dzheksona - Stechkina v prostranstve $L_2(\mathbb R_m)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 5, Ekaterinburg, 1998, 183–198 | Zbl

[9] Moskovskii A.V., “Teoremy Dzheksona v prostranstvakh $L_p(\mathbb R_n)$ i $L_{p,\lambda}(\mathbb R_+)$”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 4:1 (1997), 44–70

[10] Vasilev S.N., “Neravenstvo Dzheksona v $L_2(\mathbb T^N)$ s obobschennym modulem nepreryvnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 1, 2009, 102–110

[11] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi: v 4 t., Per. s angl., v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986, 464 pp.

[12] Fejer L., “Lebeguesche Konstanten und divergente Fourierreihen”, J. Reine Angew. Math., 138 (1910), 22–53 | Zbl

[13] Vasilev S.N., “Tochnoe neravenstvo Dzheksona - Stechkina v $L_2$ s modulem nepreryvnosti, porozhdennym proizvolnym konechno-raznostnym operatorom s postoyannymi koeffitsientami”, Dokl. RAN, 385:1 (2002), 11–14 | MR | Zbl

[14] Kozko A.I., Rozhdestvenskii A.V., “O neravenstve Dzheksona s obobschennym modulem nepreryvnosti”, Mat. sb., 195:8 (2004), 3–46 | MR

[15] Gorbachev D.V., Strankovskii S.A., “Odna ekstremalnaya zadacha dlya chetnykh polozhitelno opredelennykh tselykh funktsii eksponentsialnogo tipa”, Mat. zametki, 80:5 (2006), 712–717 | MR | Zbl