$L$-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 79-86
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear combination $\Pi_{q,\alpha}=\cos(\alpha\pi/2)P+\sin(\alpha\pi/2)Q$ of the Poisson kernel $P(t)=1/2+q\cos t+q^2\cos2t+\dots$ and its conjugate kernel $Q(t)=q\sin t+q^2\sin2t+\dots$ is considered for $\alpha\in\mathbb R$ and $|q|1$. A new explicit formula is found for the value $E_{n-1}(\Pi_{q,\alpha})$ of the best approximation in the space $L=L_{2\pi}$ of the function $\Pi_{q,\alpha}$ by the subspace of trigonometric polynomials of order at most $n-1$. Namely, it is shown that $$ E_{n-1}(\Pi_{q,\alpha})=\frac{|q|^n(1-q^2)}{1-q^{4n}}\left\|\frac{\cos(nt-\alpha\pi/2)-q^{2n}\cos(nt+\alpha\pi/2)}{1+q^2-2q\cos t}\right\|_L. $$ Besides, the value $E_{n-1}(\Pi_{q,\alpha})$ is represented as a rapidly converging series.
Keywords: trigonometric approximation
Mots-clés : Poisson kernel.
@article{TIMM_2010_16_4_a7,
     author = {N. A. Baraboshkina},
     title = {$L$-approximation of a~linear combination of the {Poisson} kernel and its conjugate kernel by trigonometric polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {79--86},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a7/}
}
TY  - JOUR
AU  - N. A. Baraboshkina
TI  - $L$-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 79
EP  - 86
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a7/
LA  - ru
ID  - TIMM_2010_16_4_a7
ER  - 
%0 Journal Article
%A N. A. Baraboshkina
%T $L$-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 79-86
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a7/
%G ru
%F TIMM_2010_16_4_a7
N. A. Baraboshkina. $L$-approximation of a linear combination of the Poisson kernel and its conjugate kernel by trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 79-86. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a7/

[1] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 406 pp.

[2] Babenko A.G., Kryakin Yu.V., “Integralnoe priblizhenie kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 19–37

[3] Babenko A.G., Kryakin Yu.V., Yudin V.A., “Ob odnom rezultate Geronimusa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 54–64 | MR

[4] Baraboshkina N.A., “Integralnoe priblizhenie lineinoi kombinatsii yadra Puassona i ego sopryazhennogo”, Approximation Theory and Applications, Abstracts of Intern. Conf. dedicated N.P. Korneichuk memory, Dnepropetrovsk National University, Dnepropetrovsk, 2010, 21–22

[5] Bernshtein S.N., Sobr. soch.: v 4 t., v. 1, Konstruktivnaya teoriya funktsii (1905-1930), Izd-vo AN SSSR, M., 1952, 581 pp.

[6] Bernshtein S.N., Sobr. soch.: v 4 t., v. 2, Konstruktivnaya teoriya funktsii (1931-1953), Izd-vo AN SSSR, M., 1954, 629 pp.

[7] Bushanskii A.V., “O nailuchshem v srednem garmonicheskom priblizhenii nekotorykh funktsii”, Issledovaniya po teorii priblizheniya funktsii i ikh prilozheniya, In-t matematiki AN USSR, Kiev, 1978, 2–37

[8] Zigmund A., Trigonometricheskie ryady: v 2 t., 1, Mir, M., 1965, 616 pp.

[9] Krein M.G., “K teorii nailuchshego priblizheniya”, Dokl. AN SSSR, 18:4-5 (1938), 245–249 | Zbl

[10] Nikolskii S.M., “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. mat., 10 (1946), 207–256 | MR | Zbl

[11] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, per. s polsk., Nauka, M., 1983, 384 pp.

[12] Chebyshev P.L., “Voprosy o naimenshikh velichinakh, svyazannye s priblizhennym predstavleniem funktsii”, Poln. sobr. soch.: v 5 t., v. 2, Matematicheskii analiz, Izd-vo AN SSSR, M.; L., 1947, 151–235

[13] Shevaldin V.T., “Poperechniki klassov svertok s yadrom Puassona”, Mat. zametki, 51:6 (1992), 126–136 | MR | Zbl

[14] DeVore R.A., Lorentz G.G., Constructive approximation, Springer-Verlag, Berlin, 1993, 446 pp. | MR

[15] Jackson D., “A general class of problems in approximation”, Amer. J. Math., 46:4 (1924), 215–234 | DOI | MR | Zbl

[16] Sz. Nagy B., “Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I. Periodischer Fall”, Ber. Verh. schs. Akad., Leipzig, 90 (1938), 103–134 | Zbl