Some properties of Jacobi polynomials orthogonal on a circle
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 65-73
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\{\psi^{(\alpha,\beta)}_n(z)\}_{n=0}^\infty$ be a system of Jacobi polynomials that is orthonormal on the circle $|z|=1$ with respect to the weight $(1-\cos\tau)^{\alpha+1/2}(1+\cos\tau)^{\beta+1/2}$ ($\alpha,\beta>-1$), and let $\psi_n^{(\alpha,\beta)*}(z):=z^n\overline{\psi_n^{(\alpha,\beta)}(1/\overline z)}$. We establish relations between the polynomial $\psi_n^{(\alpha,-1/2)}(z)$ and the $n$-th $(C,\alpha-1/2)$-mean of the Maclaurin series for the function $(1-z)^{-\alpha-3/2}$ and also between the polynomial $\psi_n^{(\alpha,-1/2)*}(z)$ and the $n$-th $(C,\alpha+1/2)$-mean of the Maclaurin series for the function $(1-z)^{-\alpha-1/2}$. We use these relations to derive an asymptotic formula for $\psi_n^{(\alpha, -1/2)}(z)$; the formula is uniform inside the disk $|z|1$. It follows that $\psi_n^{(\alpha,-1/2)}(z)\neq0$ in the disk $|z|\le\rho$ for fixed $\rho\in(0,1)$ and $\alpha>-1$ if $n$ is sufficiently large.
Keywords: Jacobi polynomials, Cesáaro means, asymptotic formula, zeros.
@article{TIMM_2010_16_4_a5,
     author = {V. M. Badkov},
     title = {Some properties of {Jacobi} polynomials orthogonal on a~circle},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {65--73},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a5/}
}
TY  - JOUR
AU  - V. M. Badkov
TI  - Some properties of Jacobi polynomials orthogonal on a circle
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 65
EP  - 73
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a5/
LA  - ru
ID  - TIMM_2010_16_4_a5
ER  - 
%0 Journal Article
%A V. M. Badkov
%T Some properties of Jacobi polynomials orthogonal on a circle
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 65-73
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a5/
%G ru
%F TIMM_2010_16_4_a5
V. M. Badkov. Some properties of Jacobi polynomials orthogonal on a circle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 65-73. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a5/

[1] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, IL, M., 1963, 360 pp.

[2] Badkov V.M., “Priblizhenie funktsii chastnymi summami ryada Fure po obobschennym mnogochlenam Yakobi”, Mat. zametki, 3:6 (1968), 671–682 | MR | Zbl

[3] Badkov V.M., “Asimptoticheskoe povedenie ortogonalnykh mnogochlenov”, Mat. sb., 109 (151):1 (1979), 46–51

[4] Badkov V.M., “Ravnomernye asimptoticheskie predstavleniya ortogonalnykh polinomov”, Tr. MIAN, 164, 1983, 6–36 | MR | Zbl

[5] Badkov V.M., “Ravnomernye asimptoticheskie predstavleniya ortogonalnykh mnogochlenov”, Priblizhenie funktsii polinomami i splainami, UNTs AN SSSR, Sverdlovsk, 1985, 41–53

[6] Badkov V.M., “O sistemakh ortogonalnykh mnogochlenov, vyrazhayuschikhsya v yavnom vide cherez mnogochleny Yakobi”, Mat. zametki, 42:5 (1987), 650–659 | MR | Zbl

[7] Badkov V.M., “Asimptoticheskie i ekstremalnye svoistva ortogonalnykh polinomov pri nalichii osobennostei u vesa”, Tr. MIAN, 198, 1992, 41–88 | Zbl

[8] Badkov V.M., “O nulyakh ortogonalnykh mnogochlenov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 2, Ekaterinburg, 2005, 30–46 | Zbl

[9] Badkov V.M., Vvedenie v edinuyu teoriyu algebraicheskikh i trigonometricheskikh ortogonalnykh polinomov, ucheb. posobie, Izd-vo Ural. un-ta, Ekaterinburg, 2006, 132 pp.

[10] Badkov V.M., “Asimptotika naibolshego nulya mnogochlena, ortogonalnogo na otrezke s neklassicheskim vesom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 38–42

[11] Badkov V.M., “Potochechnye otsenki mnogochlenov, ortogonalnykh na okruzhnosti s vesom, ne prinadlezhaschim prostranstvam $L_r$ ($r > 1$)”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 1, 2009, 66–78 | MR

[12] Geronimus Ya.L., Mnogochleny, ortogonalnye na okruzhnosti i na otrezke, Fizmatgiz, M., 1958, 240 pp.

[13] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.