Sharp inequalities for trigonometric polynomials with respect to integral functionals
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 38-53
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem on sharp inequalities for linear operators on the set of trigonometric polynomials with respect to integral functionals $\int_0^{2\pi}\varphi(|f(x)|)\,dx$ is discussed. A solution of the problem on trigonometric polynomials with given leading harmonic that deviate the least from zero with respect to such functionals over the set of all functions $\varphi$ determined, nonnegative, and nondecreasing on the semi-axis $[0,+\infty)$ is given.
Keywords: sharp inequalities for trigonometric polynomials, integral functional, trigonometric polynomials that deviate the least from zero.
@article{TIMM_2010_16_4_a3,
     author = {V. V. Arestov},
     title = {Sharp inequalities for trigonometric polynomials with respect to integral functionals},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {38--53},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a3/}
}
TY  - JOUR
AU  - V. V. Arestov
TI  - Sharp inequalities for trigonometric polynomials with respect to integral functionals
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 38
EP  - 53
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a3/
LA  - ru
ID  - TIMM_2010_16_4_a3
ER  - 
%0 Journal Article
%A V. V. Arestov
%T Sharp inequalities for trigonometric polynomials with respect to integral functionals
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 38-53
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a3/
%G ru
%F TIMM_2010_16_4_a3
V. V. Arestov. Sharp inequalities for trigonometric polynomials with respect to integral functionals. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 38-53. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a3/

[1] Bernshtein S.N., “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni”, Sobr. soch.: v 4 t., 1, Izd.-vo AN SSSR, M., 1952, 11–104 | MR

[2] Bernstein S., “Sur l'ordre de la mailleure approximation des fonctions continues par des polynômesde degré donné”, Mémoires de l'Academie Royale de Belgique, 2:4 (1912), 1–103

[3] Bernshtein S.N., “Avtorskie kommentarii”, Sobr. soch.: v 4 t., 1, Izd.-vo AN SSSR, M., 1952, 526–562

[4] Bernstein S., “Leçons sur les proprietés extremales et la meilleure approximation des fonctions analytiques d'une variable relle”, Collection Borel, Gauthier-Villar, Paris, 1926, 213 pp. | Zbl

[5] Riesz M., “Formule d'interpolation pour la dérivée d'un polynome trigonomtrique”, C. R. Acad. Sci., 158 (1914), 1152–1154 | Zbl

[6] Riesz M., “Eine trigonometrische Interpolationsformel und einige Ungleichungen fëur Polynome”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 23 (1914), 354–368 | Zbl

[7] Zigmund A., Trigonometricheskie ryady: v 2 t., v. 1, Mir, M., 1965, 616 pp. ; т. 2, Мир, М., 538 с. | MR

[8] Ivanov V.I., “Nekotorye neravenstva dlya trigonometricheskikh polinomov i ikh proizvodnykh v raznykh metrikakh”, Mat. zametki, 18:4 (1975), 489–498 | MR | Zbl

[9] Storozhenko E.A., Krotov V.G., Osvald P., “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L_p$, $0 p 1$”, Mat. sb., 98:140 (1975), 395–415 | MR | Zbl

[10] Osvald P., “Nekotorye neravenstva dlya trigonometricheskikh polinomov v metrike $L_p$, $0 p 1$”, Izv. vuzov. Matematika, 1976, no. 7, 65–75 | MR

[11] Nevai P.G., “Bernstein's inequality in $L_p$ for $0 p 1$”, J. Approx. Theory, 27:3 (1979), 239–243 | DOI | MR | Zbl

[12] Mate A., Nevai P.G., “Bernsten's inequality in $L_p$ for $0 p 1$ and $(C, 1)$ Bounds for Ortogonal Polynomials”, Ann. Math. 2nd Ser., 111:1 (1980), 145–154 | DOI | MR | Zbl

[13] Arestov V.V., “O neravenstvakh S.N. Bernshteina dlya algebraicheskikh i trigonometricheskikh polinomov”, Dokl. AN SSSR, 246:6 (1979), 1289–1292 | MR | Zbl

[14] Arestov V.V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh mnogochlenov i ikh proizvodnykh”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 3–22 | MR | Zbl

[15] Polia G., Sege G., Zadachi i teoremy iz analiza: v 2 t., v. 1, Nauka, M., 1978, 392 pp.; т. 2, Наука, М., 432 с.

[16] Marden M., The geometry of the zeros of a polynomials in a complex variable, Math. Survey, 3, Amer. Math. Soc., New York, 1949, 184 pp. | MR | Zbl

[17] De Bruijn N.G., Springer T.A., “On the zeros of composition-polynomials”, Nederl. Akad. Wetensch. Proc., 50 (1947), 895–903 ; Indag. Math., 9, 406–414 | MR | Zbl

[18] De Bruijn N.G., “Inequlities concerning polynomials in the complex domain”, Nederl. Akad. Wetensch. Proc., 50 (1947), 1265–1272 ; I ndag. Math., 9, 591–598 | MR | Zbl

[19] Markushevich A.I., Teoriya analiticheskikh funktsii, GITTL, M.; L., 1950, 703 pp.

[20] Glazyrina P.Yu., “Necessary conditions for metrics in integral Bernstein-type inequalities”, J. Approx. Theory, 162:6 (2010), 1204–1210 | DOI | MR | Zbl

[21] Arestov V.V., “Integralnye neravenstva dlya algebraicheskikh mnogochlenov na edinichnoi okruzhnosti”, Mat. zametki, 48:4 (1990), 7–18 | MR | Zbl

[22] Arestov V.V., “Integral inequalities for algebraic polynomials with a restriction on their zeros”, Anal. Math., 17:1 (1991), 11–20 | DOI | MR | Zbl

[23] Arestov V.V., “Ob odnom neravenstve Sege dlya algebraicheskikh mnogochlenov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2, Ekaterinburg, 1992, 27–33

[24] Arestov V.V., “Neravenstvo Sege dlya proizvodnykh sopryazhennogo trigonometricheskogo polinoma v $L_0$”, Mat. zametki, 56:6 (1994), 10–26 | MR

[25] Golitschek M.V., Lorentz G.G., “Bernstein inequalities in $L_p$, $0\le p\le +\infty$”, Rocky Mountain J. Mathematics, 19:1 (1989), 145–156 | DOI | MR | Zbl

[26] Szegő G., “Über einen Satz des Herrn Serge Bernstein”, Schrift. Këonigsberg. Gelehrten Gesellschaft, 5:4 (1928) | Zbl

[27] Bernshtein S.N., “Ob odnoi teoreme Sege”, Sobr. soch.: v 4 t., 2, Izd-vo AN SSSR, M., 1954, 173–177, St. 62

[28] Parfenenkov A.V., “Tochnoe neravenstvo mezhdu ravnomernymi normami algebraicheskogo mnogochlena i ego veschestvennoi chasti na kontsentricheskikh okruzhnostyakh kompleksnoi ploskosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 254–263 | Zbl

[29] Stechkin S.B., “Obobschenie nekotorykh neravenstv S.N.Bernshteina”, Dokl. AN CCCR, 60:9 (1948), 1511–1514 | MR | Zbl

[30] Nikolskii S.M., “Obobschenie odnogo neravenstva S.N.Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1507–1510 | MR | Zbl

[31] Storozhenko E.A., “Neravenstvo Nikolskogo–Stechkina dlya trigonometricheskikh polinomov v $L_0$”, Mat. zametki, 80:3 (2006), 421–428 | MR | Zbl

[32] Rahman Q.I., Schmeisser G., Les Inegalits de Markoff et de Bernshtein, Les Presses de l'Universite de Montreal, 1983 | MR

[33] Babenko A.G., “Neravenstva slabogo tipa dlya trigonometricheskikh polinomov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2, Ekaterinburg, 1992, 34–41

[34] Khardi G., Littlvud Dzh., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948, 456 pp.

[35] Arestov V.V., Mendelev A.S., “O trigonometricheskikh polinomakh, naimenee uklonyayuschikhsya ot nulya”, Dokl. RAN, 425:6 (2009), 733–736 | MR | Zbl

[36] Arestov V.V., Mendelev A.S., Trigonometric polynomials deviating the least from zero in measure and related problems, [Elektronnaya publ.], 2009, arXiv: 0912.3670 | MR | Zbl

[37] Arestov V.V., Mendelev A.S., “Trigonometric polynomials of least deviation from zero in measure and related problems”, J. Approx. Theory, 162:10 (2010), 1852–1878 | DOI | Zbl

[38] Arestov V.V., “Algebraicheskie mnogochleny, naimenee uklonyayuschiesya ot nulya po mere na otrezke”, Ukr. mat. zhurn., 62:3 (2010), 292–301