Sharp inequalities for trigonometric polynomials with respect to integral functionals
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 38-53

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem on sharp inequalities for linear operators on the set of trigonometric polynomials with respect to integral functionals $\int_0^{2\pi}\varphi(|f(x)|)\,dx$ is discussed. A solution of the problem on trigonometric polynomials with given leading harmonic that deviate the least from zero with respect to such functionals over the set of all functions $\varphi$ determined, nonnegative, and nondecreasing on the semi-axis $[0,+\infty)$ is given.
Keywords: sharp inequalities for trigonometric polynomials, integral functional, trigonometric polynomials that deviate the least from zero.
@article{TIMM_2010_16_4_a3,
     author = {V. V. Arestov},
     title = {Sharp inequalities for trigonometric polynomials with respect to integral functionals},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {38--53},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a3/}
}
TY  - JOUR
AU  - V. V. Arestov
TI  - Sharp inequalities for trigonometric polynomials with respect to integral functionals
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 38
EP  - 53
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a3/
LA  - ru
ID  - TIMM_2010_16_4_a3
ER  - 
%0 Journal Article
%A V. V. Arestov
%T Sharp inequalities for trigonometric polynomials with respect to integral functionals
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 38-53
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a3/
%G ru
%F TIMM_2010_16_4_a3
V. V. Arestov. Sharp inequalities for trigonometric polynomials with respect to integral functionals. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 38-53. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a3/