Sharp inequalities for trigonometric polynomials with respect to integral functionals
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 38-53
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem on sharp inequalities for linear operators on the set of trigonometric polynomials with respect to integral functionals $\int_0^{2\pi}\varphi(|f(x)|)\,dx$ is discussed. A solution of the problem on trigonometric polynomials with given leading harmonic that deviate the least from zero with respect to such functionals over the set of all functions $\varphi$ determined, nonnegative, and nondecreasing on the semi-axis $[0,+\infty)$ is given.
Keywords:
sharp inequalities for trigonometric polynomials, integral functional, trigonometric polynomials that deviate the least from zero.
@article{TIMM_2010_16_4_a3,
author = {V. V. Arestov},
title = {Sharp inequalities for trigonometric polynomials with respect to integral functionals},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {38--53},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a3/}
}
TY - JOUR AU - V. V. Arestov TI - Sharp inequalities for trigonometric polynomials with respect to integral functionals JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 38 EP - 53 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a3/ LA - ru ID - TIMM_2010_16_4_a3 ER -
V. V. Arestov. Sharp inequalities for trigonometric polynomials with respect to integral functionals. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 38-53. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a3/