On Bohrs inequality
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 312-313
Voir la notice du chapitre de livre
It is established that H. Bohr's inequality $\sum_{k=0}^\infty|f^{(k)}(0)/(2^{k/2}k!)|\le\sqrt2\|f\|_\infty$ is sharp on the class $H_\infty$.
Keywords:
sharp inequality for functions that are analytic in a circle.
@article{TIMM_2010_16_4_a29,
author = {V. A. Yudin},
title = {On {Bohrs} inequality},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {312--313},
year = {2010},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a29/}
}
V. A. Yudin. On Bohrs inequality. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 312-313. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a29/
[1] Garnet Dzh., Ogranichennye analiticheskie funktsii, per. s angl., Mir, M., 1984, 469 pp.
[2] Bohr H., “A theorem concerning power series”, Proc. London Math. Soc., 13:2 (1914), 1–5 | DOI | MR | Zbl
[3] Paulsen V.I., Popescu C., Singh D., “On Bohrs inequality”, Proc. London Math. Soc., 85:2 (2002), 493–512 | DOI | MR | Zbl