On Bohrs inequality
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 312-313

Voir la notice de l'article provenant de la source Math-Net.Ru

It is established that H. Bohr's inequality $\sum_{k=0}^\infty|f^{(k)}(0)/(2^{k/2}k!)|\le\sqrt2\|f\|_\infty$ is sharp on the class $H_\infty$.
Keywords: sharp inequality for functions that are analytic in a circle.
@article{TIMM_2010_16_4_a29,
     author = {V. A. Yudin},
     title = {On {Bohrs} inequality},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {312--313},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a29/}
}
TY  - JOUR
AU  - V. A. Yudin
TI  - On Bohrs inequality
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 312
EP  - 313
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a29/
LA  - ru
ID  - TIMM_2010_16_4_a29
ER  - 
%0 Journal Article
%A V. A. Yudin
%T On Bohrs inequality
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 312-313
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a29/
%G ru
%F TIMM_2010_16_4_a29
V. A. Yudin. On Bohrs inequality. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 312-313. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a29/