On the least measure of the nonnegativity set of an algebraic polynomial with zero weighted mean value on a segment
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 300-311
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathcal P_n(\varphi^{(\alpha)})$ be the set of algebraic polynomials $P_n$ of order $n$ with real coefficients and zero weighted mean value with respect to the ultraspherical weight $\varphi^{(\alpha)}(x)=(1-x^2)^\alpha$ on the interval $[-1,1]$: $\int_{-1}^1\varphi^{(\alpha)} P_n(x)\,dx=0$. We study the problem about the least possible value $\inf\{\mu(P_n)\colon P_n\in\mathcal P_n(\varphi^{(\alpha)})\}$ of the measure $\mu(P_n)=\int_{\mathcal X(P_n)}\varphi^{(\alpha)}(t)\,dt$ of the set $\mathcal X(P_n)=\{x\in[-1,1]\colon P_n(x)\ge0\}$ of points of the interval at which the polynomial $P_n\in\mathcal P_n(\varphi^{(\alpha)})$ is nonnegative. In this paper, the problem is solved for $n=2$ and $\alpha>0$. V. V. Arestov and V. Yu. Raevskaya solved the problem for $\alpha=0$ in 1997; in this case, an extremal polynomial has one interval of nonnegativity such that one of its endpoints coincides with one of the endpoints of the interval. In the case $\alpha>0$, we find that an extremal polynomial has two intervals of nonnegativity with endpoints $\pm1$.
Keywords: extremal problem, algebraic polynomials, polynomials with zero weighted mean value, ultraspherical weight.
@article{TIMM_2010_16_4_a28,
     author = {K. S. Tikhanovtseva},
     title = {On the least measure of the nonnegativity set of an algebraic polynomial with zero weighted mean value on a~segment},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {300--311},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a28/}
}
TY  - JOUR
AU  - K. S. Tikhanovtseva
TI  - On the least measure of the nonnegativity set of an algebraic polynomial with zero weighted mean value on a segment
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 300
EP  - 311
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a28/
LA  - ru
ID  - TIMM_2010_16_4_a28
ER  - 
%0 Journal Article
%A K. S. Tikhanovtseva
%T On the least measure of the nonnegativity set of an algebraic polynomial with zero weighted mean value on a segment
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 300-311
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a28/
%G ru
%F TIMM_2010_16_4_a28
K. S. Tikhanovtseva. On the least measure of the nonnegativity set of an algebraic polynomial with zero weighted mean value on a segment. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 300-311. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a28/

[1] Arestov V.V., Raevskaya V.Yu., “Odna ekstremalnaya zadacha dlya algebraicheskikh mnogochlenov s nulevym srednim znacheniem na otrezke”, Mat. zametki, 62:3 (1997), 332–344 | MR

[2] Babenko A.G., Ekstremalnye svoistva polinomov i tochnye otsenki srednekvadratichnykh priblizhenii, dis. ... kand. fiz.-mat. nauk, Sverdlovsk, 1987, 109 pp.

[3] Babenko A.G., “Ob odnoi ekstremalnoi zadache dlya polinomov”, Mat. zametki, 35:3 (1984), 349–356 | MR | Zbl

[4] Deikalova M.V., “Ob odnoi ekstremalnoi zadache dlya algebraicheskikh mnogochlenov s nulevym srednim znacheniem na mnogomernoi sfere”, Izv. Ural. gos. un-ta. Ser. Matematika i mekhanika, 44:9 (2006), 42–54 | Zbl