On the least measure of the nonnegativity set of an algebraic polynomial with zero weighted mean value on a~segment
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 300-311
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathcal P_n(\varphi^{(\alpha)})$ be the set of algebraic polynomials $P_n$ of order $n$ with real coefficients and zero weighted mean value with respect to the ultraspherical weight $\varphi^{(\alpha)}(x)=(1-x^2)^\alpha$ on the interval $[-1,1]$: $\int_{-1}^1\varphi^{(\alpha)} P_n(x)\,dx=0$. We study the problem about the least possible value $\inf\{\mu(P_n)\colon P_n\in\mathcal P_n(\varphi^{(\alpha)})\}$ of the measure $\mu(P_n)=\int_{\mathcal X(P_n)}\varphi^{(\alpha)}(t)\,dt$ of the set $\mathcal X(P_n)=\{x\in[-1,1]\colon P_n(x)\ge0\}$ of points of the interval at which the polynomial $P_n\in\mathcal P_n(\varphi^{(\alpha)})$ is nonnegative. In this paper, the problem is solved for $n=2$ and $\alpha>0$. V. V. Arestov and V. Yu. Raevskaya solved the problem for $\alpha=0$ in 1997; in this case, an extremal polynomial has one interval of nonnegativity such that one of its endpoints coincides with one of the endpoints of the interval. In the case $\alpha>0$, we find that an extremal polynomial has two intervals of nonnegativity with endpoints $\pm1$.
Keywords:
extremal problem, algebraic polynomials, polynomials with zero weighted mean value, ultraspherical weight.
@article{TIMM_2010_16_4_a28,
author = {K. S. Tikhanovtseva},
title = {On the least measure of the nonnegativity set of an algebraic polynomial with zero weighted mean value on a~segment},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {300--311},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a28/}
}
TY - JOUR AU - K. S. Tikhanovtseva TI - On the least measure of the nonnegativity set of an algebraic polynomial with zero weighted mean value on a~segment JO - Trudy Instituta matematiki i mehaniki PY - 2010 SP - 300 EP - 311 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a28/ LA - ru ID - TIMM_2010_16_4_a28 ER -
%0 Journal Article %A K. S. Tikhanovtseva %T On the least measure of the nonnegativity set of an algebraic polynomial with zero weighted mean value on a~segment %J Trudy Instituta matematiki i mehaniki %D 2010 %P 300-311 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a28/ %G ru %F TIMM_2010_16_4_a28
K. S. Tikhanovtseva. On the least measure of the nonnegativity set of an algebraic polynomial with zero weighted mean value on a~segment. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 300-311. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a28/